The complexity of unsupervised learning of lexicographic preferences - Université Toulouse - Jean Jaurès Access content directly
Conference Papers Year : 2022

The complexity of unsupervised learning of lexicographic preferences

Abstract

This paper considers the task of learning users' preferences on a combinatorial set of alternatives, as generally used by online configurators, for example. In many settings, only a set of selected alternatives during past interactions is available to the learner. Fargier et al. [2018] propose an approach to learn, in such a setting, a model of the users' preferences that ranks previously chosen alternatives as high as possible; and an algorithm to learn, in this setting, a particular model of preferences: lexicographic preferences trees (LP-trees). In this paper, we study complexity-theoretical problems related to this approach. We give an upper bound on the sample complexity of learning an LP-tree, which is logarithmic in the number of attributes. We also prove that computing the LP tree that minimises the empirical risk can be done in polynomial time when restricted to the class of linear LP-trees.
Fichier principal
Vignette du fichier
M-pref_2022_paper_3458.pdf (238.72 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03784693 , version 1 (23-09-2022)

Identifiers

  • HAL Id : hal-03784693 , version 1

Cite

Hélène Fargier, Pierre-François Gimenez, Jérôme Mengin, Bao Ngoc Le Nguyen. The complexity of unsupervised learning of lexicographic preferences. MPREF 2022 - 13th Multidisciplinary Workshop on Advances in Preference Handling, Jul 2022, Vienne, Austria. pp.1-8. ⟨hal-03784693⟩
70 View
33 Download

Share

Gmail Facebook X LinkedIn More