Simultaneous Rational Function Reconstruction with Errors: Handling Multiplicities and Poles - Laboratoire d'informatique de l'X (LIX) Access content directly
Journal Articles Journal of Symbolic Computation Year : 2023

Simultaneous Rational Function Reconstruction with Errors: Handling Multiplicities and Poles

Eleonora Guerrini
Kamel Lairedj
  • Function : Author
  • PersonId : 1131008
Romain Lebreton

Abstract

In this paper, we focus on extensions of methods for interpolating rational functions from their evaluations, in the context of erroneous evaluations. This problem can be seen both from a computer algebra and a coding theory point of view. In computer algebra, this is a generalization of Simultaneous Rational Function Reconstruction with errors and multiprecision evaluations. From an error correcting codes point of view, this problem is related to the decoding of some algebraic codes such as Reed-Solomon, Derivatives or Multiplicity codes. We give conditions on the inputs of the problem which guarantee the uniqueness of the interpolant. Since we deal with rational functions, some evaluation points may be poles: a first contribution of this work is to correct any error in a scenario with poles and multiplicities that extends (Kaltofen et al., 2020). Our second contribution is to adapt rational function reconstruction for random errors, and provide better conditions for uniqueness using interleaving techniques as in (Guerrini et al., 2021).
Fichier principal
Vignette du fichier
GuerriniLairedjLebretonZappatore.pdf (432.56 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03620179 , version 1 (25-03-2022)

Identifiers

Cite

Eleonora Guerrini, Kamel Lairedj, Romain Lebreton, Ilaria Zappatore. Simultaneous Rational Function Reconstruction with Errors: Handling Multiplicities and Poles. Journal of Symbolic Computation, 2023, 116, pp.345-364. ⟨10.1016/j.jsc.2022.10.007⟩. ⟨hal-03620179⟩
146 View
106 Download

Altmetric

Share

Gmail Facebook X LinkedIn More