Enhancing Entity Matching Through Systematic Association of Matchers to Linking Problem Types - IRIT - Institut de Recherche en Informatique de Toulouse
Communication Dans Un Congrès Année : 2023

Enhancing Entity Matching Through Systematic Association of Matchers to Linking Problem Types

Résumé

Entity matching is a critical task in integrating and linking entities across different Knowledge Graphs (KGs). Each entity matching task involves a pair of KGs, and the nature of these KGs, such as their size, schema, data quality, and domain, can categorize them into different Linking Problem Types (LPTs). Selecting the most appropriate matcher for different types of LPTs can substantially enhance the accuracy and effectiveness of entity matching. This research aims to empirically evaluate matchers for each LPT and develop a framework to systematically associate matchers with specific LPTs, enhancing both accuracy and efficiency in the entity matching process.
Fichier principal
Vignette du fichier
LPTs_and_Matchers-7.pdf (535.42 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04765757 , version 1 (04-11-2024)

Licence

Identifiants

  • HAL Id : hal-04765757 , version 1

Citer

Chloé Khadija Jradeh, Konstantin Todorov, Cassia Trojahn. Enhancing Entity Matching Through Systematic Association of Matchers to Linking Problem Types. OM 2024 - 19th International Workshop on Ontology Matching collocated with ISWC 2024, Nov 2024, Baltimore, United States. ⟨hal-04765757⟩
0 Consultations
0 Téléchargements

Partager

More