BAYESIAN SPARSE MODEL FOR COMPLEX-VALUED MAGNETIC RESONANCE SPECTROSCOPY RESTORATION - Université Toulouse - Jean Jaurès
Communication Dans Un Congrès Année : 2024

BAYESIAN SPARSE MODEL FOR COMPLEX-VALUED MAGNETIC RESONANCE SPECTROSCOPY RESTORATION

Résumé

Sparse regularisation has proven its worth and effectiveness in many fields, such as medical imaging. In this sense, nuclear magnetic resonance spectroscopy (MRS) is one of the modalities that could greatly benefit from sparse regularisation. This paper introduces a novel Bayesian approach for MRS restoration that accounts for possible errors in the observation linear operator. The algorithm is tailored to the complex nature of MRS data, incorporating both real and imaginary parts of the spectrum. An MCMC (Markov chain Monte Carlo) inference is conducted using a Gibbs sampler strategy. The method has been successfully validated on both synthetic and clinical data of high-grade brain tumor glioblastoma (GBM) patients. This study will enable further analysis of metabolites of interest not conventionally considered in clinics because of their undetectable concentration.
Fichier principal
Vignette du fichier
ISBI2024_VF_23022024.pdf (1.12 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04732385 , version 1 (11-10-2024)

Identifiants

Citer

Wafae Labriji, Soléakhéna Ken, Gaelle Dormio, Jean-Yves Tourneret, Elizabeth Moyal Cohen-Jonathan, et al.. BAYESIAN SPARSE MODEL FOR COMPLEX-VALUED MAGNETIC RESONANCE SPECTROSCOPY RESTORATION. 2024 IEEE International Symposium on Biomedical Imaging, May 2024, Athens, Greece. ⟨10.1109/ISBI56570.2024.10635294⟩. ⟨hal-04732385⟩
40 Consultations
11 Téléchargements

Altmetric

Partager

More