
HAL Id: hal-02490279
https://univ-tlse2.hal.science/hal-02490279

Submitted on 25 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Physical and land-cover variables influence ant
functional groups and species diversity along elevational

gradients
A. Bernadou, Régis Céréghino, Hugues Barcet, Maud Combe, Xavier

Espadaler, Vincent Fourcassie

To cite this version:
A. Bernadou, Régis Céréghino, Hugues Barcet, Maud Combe, Xavier Espadaler, et al.. Physical and
land-cover variables influence ant functional groups and species diversity along elevational gradients.
Landscape Ecology, 2013, 28, pp.1387 - 1400. �10.1007/s10980-013-9892-y�. �hal-02490279�

https://univ-tlse2.hal.science/hal-02490279
https://hal.archives-ouvertes.fr


RESEARCH ARTICLE

Physical and land-cover variables influence ant functional
groups and species diversity along elevational gradients

Abel Bernadou • Régis Céréghino •

Hugues Barcet • Maud Combe •

Xavier Espadaler • Vincent Fourcassié
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Abstract Of particular importance in shaping spe-

cies assemblages is the spatial heterogeneity of the

environment. The aim of our study was to investigate

the influence of spatial heterogeneity and environ-

mental complexity on the distribution of ant functional

groups and species diversity along altitudinal gradi-

ents in a temperate ecosystem (Pyrenees Mountains).

During three summers, we sampled 20 sites distributed

across two Pyrenean valleys ranging in altitude from

1,009 to 2,339 m by using pitfall traps and hand

collection. The environment around each sampling

points was characterized by using both physical and

land-cover variables. We then used a self-organizing

map algorithm (SOM, neural network) to detect and

characterize the relationship between the spatial

distribution of ant functional groups, species diversity,

and the variables measured. The use of SOM allowed

us to reduce the apparent complexity of the environ-

ment to five clusters that highlighted two main

gradients: an altitudinal gradient and a gradient of

environmental closure. The composition of ant func-

tional groups and species diversity changed along both

of these gradients and was differently affected by

environmental variables. The SOM also allowed us to

validate the contours of most ant functional groups by

highlighting the response of these groups to the

environmental and land-cover variables.

Keywords Ants � Community ecology � Elevation
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Introduction

One of the main concerns in community ecology is to

identify the environmental factors (either biotic or

abiotic) that shape species assemblages (Rosenzweig

1995). Of particular importance in this respect is the

heterogeneity created by the variation of these factors.

According to the hypothesis of habitat heterogeneity

suggested by MacArthur and MacArthur (1961),

species richness should increase with increasing

structural complexity of the environment. This rela-

tionship has indeed been found in many taxa, e.g.

arthropods, birds, mammals, amphibians or reptiles

(see Tews et al. 2004 for a review). Environmental

heterogeneity can significantly influence not only

species richness but also their relative distribution.

The distribution of ants for example is significantly

affected by the spatial heterogeneity generated by fire

(Parr and Andersen 2008), anthropogenic disturbances

(Kalif et al. 2001), habitat fragmentation (Vasconcelos

et al. 2006), or grazing (Bestelmeyer and Wiens 1996).

Natural gradients (e.g. altitude, latitude) are also a

major source of spatial heterogeneity that can influ-

ence the structure of species assemblages. Mountain-

ous areas in particular are characterized by rapid

changes in climate, soil, or vegetation, over relatively

short distances (Körner 2007). They thus offer

considerable landscape heterogeneity on a condensed

area and are ideal for exploring the ecological

mechanisms underlying spatial patterns in species

richness and distribution.

In this study, we investigated the influence of

spatial heterogeneity and environmental complexity

along altitudinal gradients on the distribution of ant

functional groups and species diversity across two

Pyrenean valleys: one located in Andorra, on the

Southern side of the Pyrenees (the Madriu-Perafita-

Claror valley), and another located in France, on the

Northern side of the Pyrenees (the Pique valley). The

categorization of organisms into functional groups has

been widely used in the study of animal communities

(birds: Cody 1985; reptiles: Pianka 1986). Species

classification by functional groups reduces the appar-

ent complexity of animal communities (Andersen

1997a) and thus facilitates the understanding of the

general principles that govern the functioning of

ecosystems. Although the classification in functional

groups has been used to study the ant fauna

of Australia (Andersen 1995; Hoffmann and

Andersen 2003), South (Bestelmeyer and Wiens

1996) and North America (Andersen 1997a; Stephens

and Wagner 2006), and Asia (Pfeiffer et al. 2003), this

method has been rarely used to study the ant fauna of

Europe (but see Gómez et al. 2003).

Environmental heterogeneity may act at multiple

scales on animals, both spatially and temporally

(Wiens 1989; Levin 1992). All of these scales however

may not be relevant to understand how an animal

interacts with its environment and the choice of the

spatial scale at which to study environmental hetero-

geneity should be consistent with its perception of the

environment. This requires the selection of appropri-

ate descriptive variables (Turner et al. 2001). Physical,

chemical and biological data, however, are often

difficult to analyze in an integrated way because they

are complex, noisy, and vary and covary in a non-

linear way (Lek and Guégan 2000). One solution is to

use modeling techniques, such as artificial neural

networks, that are able to take into account the

complex structure of multi-dimensional datasets

(Chon 2011). For example, the Self-Organizing Map

algorithm (SOM, unsupervised neural network, Ko-

honen 2001) is a powerful and well-suited tool to

detect patterns in animal communities in relation to

environmental variables (Lek and Guégan 2000).

SOMs have been used in ecology to study mostly

aquatic insect or fish communities (e.g. Compin and

Céréghino 2007; ants: Groc et al. 2007; Delabie et al.

2009; Céréghino et al. 2010). In this study we used

SOM to fulfill two main objectives: (1) to describe

landscape spatial patterns along altitudinal gradients

and to explore whether the apparent complexity of

mountain environments can be reduced to a few

simple elements and (2) to address the question of how

ant functional groups and pattern of species diversity

respond to the changes in land-cover and physical

variables along these gradients.

Methods

Study area and sampling sites

Our study area was located in the Pyrenees, a

mountain range located in south-west Europe and that

is shared between Spain, France and the Principality of

Andorra. Because of their orientation and geographic

location, these mountains present considerable
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climatic contrasts. The northern and western sides of

the Pyrenees have an oceanic climate, with rainfall

throughout the year, mild winters and cool summers.

The southern side in contrast has a more continental

climate, characterized by high solar radiation, torren-

tial rains at equinoxes, large temperature variations,

and very cold winters and dry summers.

Two valleys were sampled in this study: the

Madriu-Perafita-Claror, in Andorra, and the Pique

valley, in France. The Madriu-Perafita-Claror valley is

a glacial valley located in the southeast part of

Andorra that covers an area of 4,247 ha. The valley

is oriented along an east–west axis and extends along

an altitudinal gradient ranging from 1,055 to 2,905 m.

The valley is well preserved: the production of timber

has ceased in the 1950s’ and since the 1980s’ there has

been almost no human intervention. Because of its

state of preservation, the Madriu-Perafita-Claror val-

ley has been registered in 2004 as World Heritage by

UNESCO for its cultural landscape (www.unesco.org,

see Madriu-Perafita-Claror valley). The Pique valley

is a glacial valley predominantly oriented along a

north–south axis, extending along an altitudinal gra-

dient ranging from 650 to 3,116 m. It is dominated by

peaks over 3,000 m in altitude that lie on the border

between France and Spain. This valley is part of the

Natura 2,000 sites (www.natura2000.fr/); it covers an

area of 8,251 ha divided into two main valleys (the

Pique valley and the Lys valley).

We sampled ants at 20 sites (9 sites in the Madriu

valley and 11 sites in the Pique valley) in July–August

2005 to 2007. To select the sampling sites, three main

factors were considered: elevation, exposure, and type

of vegetation cover. We sampled along an altitudinal

gradient ranging from 1,300 to 2,300 m for the Madriu

valley, and from 1,000 to 2,300 m for the Pique valley.

Sampling could not be achieved over a larger altitu-

dinal gradient, because of high anthropogenic pres-

sures below 1,300 m in the Madriu valley, and below

1,000 m in the Pique valley. Locations higher than

2,300 m were not sampled because ant species

richness beyond this altitude is known to be very

low (Glaser 2006). The two valleys were thus sampled

on 62.5 and 61.4 % of their altitudinal range, for the

Madriu and Pique valleys respectively. The different

categories of vegetation covers considered for the

selection of the sampling sites were: forest, meadow,

scree and bushes. Table S1 gives the main character-

istics of the sampling sites for the two valleys.

Sampling methods and species identification

At each of the 20 sites, we used a variation of the ALL

protocol (Agosti et al. 2000) to sample the ants. A

190 m long line transect was traced and sampling

points were placed on this line every 10 m (making a

total of 20 sampling points per site, yielding a total 400

sampling points for the two valleys). The position of

the sampling points were recorded by means of a GPS

(Garmin� eTrex�) and subsequently loaded into

DIVA-GIS, a free geographic information system

(www.diva-gis.org).

Two collection methods were used to sample the

ants at each sampling point: pitfall traps and hand

collection. The pitfall traps consisted of plastic cups

(diameter: 35 mm, height: 70 mm), filled to one-third

of their height with ethylene glycol. The cups were

buried so that their upper lip was flushed with the

surface of the substrate. The pitfall traps were therefore

set in action immediately and were left in place for

5–8 days (Table S1). The pitfalls could not be operated

for the same length of time because access to some of

the transects was difficult and was sometimes pre-

vented by adverse meteorological conditions. Pitfall

trapping was supplemented by hand collecting around

each sampling point at the moment the pitfalls were

removed. Hand collecting consisted of one person (the

same person for all transects) picking up all visible ants

within a 2 m radius around each trap during a

maximum of 3 min. Ants were searched on the ground

and in the vegetation; potential nesting sites were also

inspected (dead wood, underneath stones/bark). The

combination of pitfall and hand collecting sampling

techniques is known to perform well in temperate

regions (Groc et al. 2007). Winkler extractors were not

used because the leaf litter is generally shallow

(because of heavy rainfall, the presence of rocks, and

high slope inclination) or relatively poor (particularly

in coniferous forests) in mountainous environments.

All ants collected at each sampling point were placed in

plastic vials filled with 90 % ethanol. Once in the

laboratory, ants were identified to the species level

using available keys (Seifert 2007).

Because ants are social insects, a single sample may

contain a high abundance of a rare species. Our

analyses are therefore based on the species occurrence

in the samples rather than on the number of individ-

uals. A sampling point thus corresponds to the

presence/absence of various species collected at a
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sampling site by a pitfall trap or by hand collection

around the pitfall or by both sampling methods.

Consequently, the theoretical maximum of a species

occurrence in a transect is 20.

Environmental variables and habitat

characterization

The 20 sites sampled and the micro-environment

around each pitfall were characterized by using four

physical and eight land-cover variables. These 12

variables were chosen because they have been shown

to be consistently correlated with ant species richness

in previous studies (for physical variables see for

example: Kaspari et al. 2004; Sanders et al. 2007;

Dunn et al. 2009a). The physical variables considered

were: annual mean temperature (in �C), annual

precipitation (in mm), elevation a.s.l (in m) and slope.

Annual mean temperature and annual precipitation

were obtained from two GIS data layers (30 arc-

seconds) of the WorldClim 1.4 database (Hijmans

et al. 2005), whereas elevation was recorded directly

in the field by a GPS. WorldClim computes temper-

ature as a function of elevation, which means that all

points of a transect where characterized by the same

temperature value in our study. The slope was

characterized locally around each pitfall by the same

person throughout the whole study using the following

scale: 0 (null to gentle slope), 1 (moderate slope),

2 (strong slope). To describe the area surrounding the

pitfalls, digital photographs centered on each pitfall

were taken. Then, on each photograph, we considered

an area of 1 m2 centered on the pitfall and used an

image analysis software to delineate the outline of the

following land-cover variables within this area: shrub,

bare rock/pebbles, dead wood/stump, litter, grass and

bare soil. The percentage of area covered by each of

these elements was then determined. In addition, we

also noted the presence/absence of either a hardwood

or coniferous canopy above each pitfall.

Ant functional groups

All ant species collected in the Madriu and Pique valleys

were classified into five functional groups (see Table S2)

according to the categorization proposed by Roig and

Espadaler (2010). This latter is an adaptation for the

Iberian Peninsula and Balearic Islands of the classifica-

tion used by Andersen (1995, 1997a, 2000) for

Australian and North American ants and on that used

by Bestelmeyer and Wiens (1996) for South American

ants. Given that some genera (e.g. Formica and Lasius in

this study) are heterogeneous in terms of their ecology

and behaviour, different functional groups sometimes

share species of the same genus. The five following

functional groups were distinguished:

– Opportunists (O) these are, in general, unspecial-

ized species, whose distributions are strongly

influenced by competition with other ants. Accord-

ing to Andersen (2000), these species often span a

large diversity of habitats. They predominate in

areas where stress or disturbance limit ant diver-

sity and biomass and thus in which behavioural

dominance is low. In our study, this group is

represented by species of the genus Formica and

by species like Tapinoma erraticum and Tetramo-

rium impurum. T. erraticum was not classified as a

Dominant Dolichoderinae because its societies are

small (Seifert 2007) with a much reduced worker

number compared, e.g., to the polydomous species

T. nigerrimum.

– Social Parasites (SP): this group gathers species

that are either temporary (e.g. Lasius mixtus) or

permanent (e.g. Strongylognatus testaceus) social

parasites.

– Coarse Woody Debris Specialist (CWDS) this

group is represented by two species: Camponotus

herculeanus and C. ligniperda. These species nest

in stumps or tree trunks.

– Cold Climate Specialists/Shadow Habitats (CCS/

SW): these species have their distributions cen-

tered on cold climate areas (Andersen 2000). They

are generally characteristic of habitats where the

abundance of dominant dolichoderines is low

(Andersen 2000). This group is mainly represented

in the Madriu and Pique valleys by the genera

Formica, Lasius and Myrmica. The ants of the

genus Myrmica were classified as CCS/SW rather

than Opportunists because this genus is mainly

present within mountainous, humid and grassy

environments (Radchenko and Elmes 2010).

– Cryptics (C) these species are small to tiny species.

This group is predominantly represented by

myrmicines and ponerines that nest and forage

within soil, litter and dead branches (Andersen

2000). These ants are mainly present in forested

habitats. In our study, this group is represented by
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the two genera Leptothorax and Temnothorax and

by one species of the Lasius genus: L. flavus.

Leptothorax and Temnothorax species were

included in the Cryptics functional group because

they have cryptic behaviour in the sense that they

forage singly, move slowly and ‘‘have little

interaction with other epigaeic ants’’ (Andersen

1995).

Data analysis

To estimate total ant species richness at the valley and

transect levels and to evaluate the completeness of our

samples, Chao2, a non parametric richness estimator,

was calculated with the program EstimateS 7.5.2 (100

replicates) (Colwell 2005).

We used the SOM Toolbox (version 2) for Matlab�

developed by the Laboratory of Information and

Computer Science at the Helsinki University of

Technology (http://www.cis.hut.fi/projects/somtool

box/, see Vesanto et al. (1999) for practical instruc-

tions). The SOM is an unsupervised learning procedure

which transforms a set of multidimensional data into a

two dimensional map subject to a topological con-

straint (see Kohonen 2001 for details). The data are

projected onto a rectangular grid composed of hexag-

onal cells, forming a map (Giraudel and Lek 2001). The

SOM plots the similarities of the data by grouping

similar data items together as follows:

(i) Virtual samples (visualized here as hexagonal

cells) are initialized with random samples taken

from the input data set.

(ii) The virtual samples are updated in an iterative

way: (1) a sample unit is randomly chosen as

an input unit, (2) the Euclidean distance

between this sample unit and every virtual

sample is computed, (3) the virtual sample

closest to the input unit is selected and called

‘best matching unit’ (BMU), and (4) the BMU

and its neighbours are moved a bit towards the

input unit.

The training is separated into two parts:

(i) Ordering phase (the 3,000 first steps): when this

phase takes place, the samples are highly mod-

ified in the wide neighbourhood of the BMU.

(ii) Tuning phase (7,000 steps): during this phase,

only the virtual samples adjacent to the BMU

are lightly modified. At the end of the training,

the BMU is determined for each sample, and

each sample is set in the corresponding hexagon

of the SOM map. Neighbouring samples on the

grid are expected to represent adjacent clusters

of samples. Consequently, sampling points

appearing distant in the modelling space

(according to physical and land-cover variables)

represent expected differences among sampling

points in real environmental characteristics.

The self-organizing map for this study consists of

two layers of neurons connected by weights: an input

layer and an output layer. The input layer was

composed of 12 neurons (one per variable) connected

to the 400 sampling points. The output layer was

composed of 98 neurons (see below) visualized as

hexagonal cells organized on an array of 14 rows by 7

columns (Fig. 1a). The number of output neurons

(map size) is important to detect the deviation of the

data. If the map size is too small, it might not explain

some important differences that should be detected

(Compin and Céréghino 2007). Conversely, if the map

size is too big, the differences are too small. We

followed the procedure described in Park et al. (2003)

and Céréghino and Park (2009): the network was

trained with different map sizes (4–200 neurons) and

we chose the optimum map size based on local

minimum values for quantization and topographic

errors. Quantization error is the average distance

between each data vector and its BMU and, thus,

measures map resolution. Topographic error repre-

sents the proportion of all data vectors for which 1st

and 2nd BMUs are not adjacent, and is used for the

measurement of topology preservation The number of

98 output neurons retained for this study fitted well the

heuristic rule suggested by Vesanto et al. (2000) who

reported that the optimal number of map units is close

to 5Hn, where n is the number of samples. For each

sampling point, we made a list of the different species

collected and determined the values of the environ-

mental variables characterizing the sampling point. To

highlight the relationships between the different ant

functional groups and the environmental variables, the

number of species occurrences of each functional

group was introduced into the SOM previously trained
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Fig. 1 Distribution of the

sampling points on the self-

organizing map (SOM).

a The sampling points are

distributed according to four

physical variables (altitude,

slope, mean annual

temperature and mean

precipitation) and eight

land-cover variables

variables (presence of a

hardwood or coniferous

canopy, percent area

covered by shrub, bare rock/

pebbles, dead wood/stump,

litter, grass and bare soil in a

1 m2 area around each

pitfall). Altitude, mean

annual temperature and

mean precipitation were

obtained by using a GIS

software while slope and the

eight environmental

variables were estimated

directly in the field or by the

analysis of digital

photographs centered on

each sampling points. The

codes used to designate the

sampling points on the SOM

refer to the valley (M for

Madriu, P for Pique), the

transect number within the

valley, and the location of

the sampling points within

the transect (e.g.: MT2P20,

Madriu valley, Transect 2,

sampling points 20).

Neighboring sampling

points on the self-organizing

map share similar

environmental

characteristics. b The SOM

units were classified into

five clusters (A, B, C, D and

E). The boundaries of the

five clusters (A, B, C, D and

E) were obtained by

applying Ward’s algorithm

to the weights of the

variables in the SOM

hexagons. The smallest

branches with numbers in

the dendrogram correspond

to the SOM neurons
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with the four physical and the eight land cover

variables that characterize each sampling point. Dur-

ing the training of the map, we used a mask to give a

null weight to the five functional groups, whereas

physical and land-cover variables were given a weight

of 1. Therefore, the search for the BMU was based on

the 4 physical and 8 land-cover variables only. Setting

the mask value to zero for a given component (here for

each of the five functional groups) removes the effect

of that component on the map organization (Vesanto

et al. 2000). The values and distributions of the

functional groups were then visualized on the SOM

previously trained with physical and land-cover vari-

ables only and formed by the 98 hexagonal cells.

In a last step, Ward’s algorithm was used to identify

the boundaries between each cluster on the Kohonen

map (Fig. 1b). The distributions of the number of

species occurrences in each ant functional groups in the

different clusters were compared using the v2 test for

independent samples (Siegel and Castellan 1988). To

further analyze the distribution of functional groups

within each cluster, an analysis of residuals was

performed (Siegel and Castellan 1988). This analysis

tests the contribution of each functional group to each

cluster. Moreover, it reveals whether a functional group

is positively or negatively associated to a given cluster.

We used a generalized linear mixed model

(GLMM) with a Poisson error distribution to examine

the variation in ant species richness per sampling point

among the SOM clusters. To account for spatial

autocorrelation among sampling points located in the

same transects and in the same valley, the variable

transect was nested within the variable valley and was

entered as a random variable in the model. To assess

the overall effect of the SOM clusters on species

diversity we fitted a first model in which the SOM

cluster variable was entered as a fixed effect categor-

ical factor and the transect variable (nested within

valley) was entered as a random effect categorical

factor. We then fitted a second model with no fixed

effects and compared the two models with a likelihood

ratio test (Zuur et al. 2009). The different SOM

clusters were then regrouped by removing non-

significant factor levels in a stepwise a posteriori

procedure (Crawley 2007). The models were fitted

with the statistical software R 2.11.0 (R Development

Core Team 2011) and the R-package lme4 (linear

mixed-effects models using S4 classes, Bates et al.

2011) using the function glmer.

Results

Classification of sampling sites

After training the Kohonen map with the four physical

variables and the eight land-cover variables, five

clusters of sampling sites obtained from the SOM

output were identified (Fig. 1a, b).

The SOM allowed us to identify two main gradients

(Fig. 2 and Fig. S1): a first gradient extending from the

lower right to the upper left corner of the map (clusters

D and E vs. cluster A, B and C), which corresponds to

an altitudinal gradient ranging from low to high

altitudes, and a second gradient, extending from the

bottom to the top of the map (clusters C, D and E vs.

cluster A and B), which corresponds to a gradient of

environmental closure, ranging from closed to open

areas.

Cluster B corresponds to sampling sites of medium

elevations located in open areas, e.g. grassland areas

(Fig. 2). Cluster A is equivalent to cluster B but for

high elevation. It includes sampling sites typical of

mountain environments, e.g. screes of high altitudes

located on steep slopes. A large proportion of the

sampling sites of cluster A is dominated by bare rocks

and shrubs (Fig. 2). Clusters C and E correspond to

sampling sites in forest areas: cluster E to low altitude

forests dominated by hardwood, with a high abun-

dance of litter and dead wood, and cluster C to high

altitude forests in which conifers are predominant.

Note that for cluster E the sampling sites with high

slopes are also characterized by bare soil. Cluster D

corresponds to a transition area between hardwood

forests and grasslands (Fig. 2).

Distribution of ant functional groups and species

diversity

In total, 42 ant species were found in the two valleys.

The number of species collected at each transect

varied between 25 at 1,351 m and 2 at 2,339 m, and

between 14 at 1,009 m and 4 at 2,299 m, for the

Madriu and Pique valley respectively. The Chao2

estimator indicated that between 66 and 100 %

(mean ± SD = 93.48 ± 10.89) of the expected max-

imum number of species were collected for the 9

transects in the Madriu valley, and between 63 and

100 % (mean ± SD = 90.74 ± 12.29) for the 11

transects in the Pique valley using pitfall traps and
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hand collecting. There was no relationship between

these values and the duration of pitfall activity for the

Madriu valley (Spearman’s rank correlation: r =

-0.49, P = 0.17, n = 9) or the Pique valley (Spear-

man’s rank correlation: r = 0.15, P = 0.64, n = 11)

(Table S1).

The distribution of the five functional groups on the

SOM previously trained with the physical and land-

cover variables are shown in Fig. 3. With the excep-

tion of Social Parasites, all functional groups are

present in the five clusters of the Kohonen map. The

Cold Climate Specialists/Shadow Habitats is the

dominant functional group in most clusters (range:

44–58 %, mean: 56 %, Fig. 4a). The Opportunists is

the second largest group (range: 23–47 %, mean:

30 %), followed by the Cryptics (range: 8–19 %,

mean: 11 %), the Coarse Woody Debris Specialists

(range: 1–15 %, mean: 5 %) and the Social Parasites

(range: 0–3 %, mean: 1 %) (Figs. 3, 4a).

The distribution of species occurrences in each

functional group was not homogeneous across the five

clusters (v2 = 96.16, df = 16, p \ 0.001). The

Coarse Woody Debris Specialists functional group

was significantly and positively associated with cluster

C (residuals = 6.2, Figs. 3, 4b) and negatively asso-

ciated with cluster B (residual = -2.4, Figs. 3, 4b)

Fig. 2 Gradient distribution of each environmental variable on

the trained self-organizing map. A grayscale (dark = high

value, light = low values) was used to visualize the value of the

variables. The SOM allows to derive two main gradients: an

altitudinal gradient ranging from low (clusters D and E) to high

(clusters A, B and C) altitudes, and a gradient of environmental

closure, ranging from closed (clusters C, D and E) to open

(clusters A and B) areas. See also Fig. S1 for the mean annual

temperature and mean precipitation variables
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Fig. 3 Ant functional groups. Visualization of the five ant

functional groups on the self-organizing map trained with the

four physical and the eight land-cover variables. Each functional

group has its own distribution pattern. The functional groups

occupying similar zones on the map have a high probability to

be associated and to be found in the same area. A grayscale

(light = low values, dark = high values) was used to visualize

the level of presence of each functional group. Note that the

grayscales are different for each functional group
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Fig. 4 Analysis of the distribution of the ant functional groups.

a Percentage of species occurrences for each functional group

found in the Madriu and Pique valley. The percentages are given

for each of the five clusters identified by Ward’s algorithm on

the self-organizing map and for all clusters grouped together.

b Residual values for the five ant functional groups found in the

Madriu and Pique valley. The residual values are given for each

of the five clusters identified on the self-organizing map.

According to the sign of their residual values, the functional

groups may be positively or negatively associated with the

clusters. The two dotted lines represent the significance

threshold at P = 0.05. O opportunists, SP social parasites,

CWDS coarse woody debris specialist, CCS/SW cold climate

specialists/shadow habitats and C cryptics
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and to a lesser extent to cluster A (residual = –1.8, not

significant, Figs. 3, 4b). This functional group is thus

characteristic of woodland areas and is negatively

associated with open areas. The Cold Climate Spe-

cialists/Shadow Habitat and Opportunist functional

groups do not show any clear distribution pattern.

They are abundant in all clusters (Fig. 4a). The Social

Parasites are significantly and positively associated

with cluster E (residuals = 3.8, Fig. 4b). The Cryptic

group was significantly present in cluster E (residu-

als = 2.3, Fig. 4b) and is thus associated with the

presence of litter and hardwood canopy.

The distribution of ant species richness per sam-

pling point differed significantly among the five

clusters (GLMM, v2 = 94.18, df = 4, p \ 0.001).

Cluster E had the lowest ant species richness (mean ant

species richness per sampling point ±CI0.95:

0.74 ± 0.27) while clusters B (3.77 ± 0.38) had the

highest one (Fig. 5). Cluster D was only marginally

significantly different from clusters A and C (GLMM,

z value = 1.93, p = 0.052).

Discussion

In this study we used a Self-Organizing Map algorithm

to categorize 400 sampling points on the basis of 12

environmental variables characterizing the physical

environment and the type of land-cover around each

sampling point. The SOM algorithm reduced the

complexity of the database to five clusters of sampling

points corresponding to high and low elevation

grassland areas, hardwood and coniferous forests,

and a transition area between hardwood forests and

grasslands. These clusters highlight two main gradi-

ents: an altitudinal gradient that mimics to a certain

extent the altitudinal zonation of vegetation found in

the Pyrenees (Ninot et al. 2007) and a gradient of

environmental closure. We then categorized the

species found at the sampling points into five

functional groups and used the SOM map generated

by the algorithm to study the distribution of these

groups in the environments sampled. Using this

method, we were able to validate the contours of most

functional groups by positively or negatively corre-

lating their distribution with the environmental vari-

ables measured. The distribution of ant functional

groups changed along environmental gradients and

was differently affected by environmental variables.

Finally, we examined the distribution of ant species

richness across the five clusters of sampling points

identified by the SOM algorithm to find out the

environmental characteristics associated with low or

high ant species diversity. Three of the five functional

groups (Coarse Woody Debris Specialists, Social

Parasites and the Cryptic) showed a clear pattern of

association with particular features of the environment

such as the presence of litter and canopy. These three

groups however represented only 31 % of the 42

species collected whereas the distribution pattern of

the two other functional groups (Cold Climate

Specialist/Shadow Habitat and Opportunists) that

represented 69 % of the total number of species

collected was much less clear. Our results show

therefore that the distribution of the five functional

groups we defined change along environmental gra-

dients, and that they are thus differently affected by

environmental variables. Assuming that species are

more likely to reach neighboring areas than areas far

apart and that neighboring sampling points tend to

exhibit similar physical features, small-scale autocor-

relations of ant assemblages were suggested from the

SOM outputs (Figs. 1, 2, 3). However, almost all ant

functional groups (four out of five) were present

within all SOM clusters which shows that spatial

autocorrelation alone cannot explain the SOM outputs.

Fig. 5 Ant species richness. Mean number of ant species

(± CI0.95) per sampling point for each SOM cluster (A–E) and

for all clusters grouped together. Significant differences in ant

species richness between clusters were tested with a generalized

linear mixed model (GLMM) with a Poisson error distribution.

Different letters above the error bars indicate significant

differences in ant species richness at P \ 0.05

1396 Landscape Ecol (2013) 28:1387–1400

123



Indeed, if spatial autocorrelation were the only factor

explaining the relationship between sampling points

then each of the SOM cluster would correspond to an

ant functional group.

Why does the SOM analysis show such a discrep-

ancy among functional groups in their pattern of

association with environmental variables and why do

in particular both the Cold Climate Specialist/Shadow

Habitat and Opportunists functional groups appear to

be so widely distributed in our sampling area? Two

explanations could be provided. The first explanation

could be that this result reflects true particular

biological traits of the species belonging to these

groups. According to Andersen (1995, 1997a, 2000)

the distribution of the Cold Climate Specialists/

Shadow Habitat species is centred on cool-temperate

regions. In the two valleys we sampled, this group was

represented by three genera: Formica, Lasius and

Myrmica. Most of the species of these genera are

holarctic and are characteristic of the cold regions of

the northern hemisphere (Bernard 1968). Their suc-

cess in these regions is mainly due to specific

behavioural and/or physiological adaptive traits that

allow them to resist to low temperatures (Heinze 1992;

Maysov and Kipyatkov 2009). Since the whole area

we sampled was located in a temperate mountainous

region it should therefore come as no surprise that the

Cold Climate Specialists/Shadow Habitat functional

group was not found to be associated with any

particular specific environmental variable. As for the

species belonging to the Opportunistic functional

group, we found that they occupy a wide range of

habitat but were particularly present in grassland areas

of high altitudes, a relatively stressful environment for

ants, both because of the low temperatures, charac-

teristic of high altitudes, and of the scarcity of food

(Andersen 2000).

A second and alternative explanation to the dis-

crepancy found among functional groups in their

pattern of association with environmental variables

could be linked to the criteria used to define the

functional groups. The criteria used to define the Cold

Climate Specialist/Shadow Habitat and Opportunists

functional groups could not be relevant to obtain clear

patterns with the SOM analysis. As pointed out by

Andersen (1997b) the definition of functional groups

is scale-dependent and one should thus be cautious in

using them in community ecology studies. As a case in

point Andersen (1997b) gives the example of the

mound-building species of the genus Formica. At a

local scale, these species are behaviorally dominant

throughout the Holarctic and they could thus be

described as belonging to the dominant species

functional group in local ant fauna (Andersen 1997b;

Savolainen and Vepsäläinen 1988). However, this

dominance is limited to cool-temperate regions and at

a global scale they would rather be considered as

belonging to the group of cold-climate specialists. The

importance of competition and dominance in ant

community structure is thus scale dependent. The

categorization in functional groups used in our study

corresponds to that proposed by Roig and Espadaler

(2010) to describe the ant fauna of the Iberian

Peninsula and Balearic Islands. Applied at the local

scale of our study area, this categorization may not be

discriminative enough (Andersen 1997b) and could

conceal the response of some ant species to particular

ecological variables. A solution could have been found

in subdividing some of the functional groups we used

(Bestelmeyer and Wiens 1996; Andersen 1997b). This

could have increased the discriminative power of our

analysis and as a consequence, clearer successional

patterns in relation to environmental variables could

have been revealed.

The ant species belonging to the Coarse Woody

Debris Specialists and Cryptic functional groups were

significantly and positively associated with woodland

areas and negatively associated with open areas. The

strong response of these two groups to the presence of

a canopy can most likely be explained by their nesting

habit. As a caveat however one should keep in mind

that SOM is a correlative analysis and thus does not

convey information on the mechanisms generating the

distributions observed. For example, we do not know

if the presence or absence of a species in a given

environment results from an effective choice of a

habitat by newly mated queens during colony found-

ing, from an impossibility to colonize a particular

environment, or whether it results from competition

mechanisms. For the Social Parasites, as for the

Coarse Woody Debris Specialists and Cryptic groups,

these species show a clear and localized pattern of

distribution on the SOM. However, this result has to be

interpreted cautiously. This functional group probably

does not respond to physical and land-cover variables

per se, but rather to the presence or absence of its hosts.

The mean number of species in the five clusters we

identified ranged from 0.7 to 3.7. Clusters B and D have
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a higher species richness compared to clusters A and C

which have also the highest mean altitudes. The

decrease in ant species richness with increasing

altitude has been reported in other studies (e.g. Sanders

et al. 2007, 2010; Lessard et al. 2007) and many

hypotheses have been put forward to explain this

pattern (see Dunn et al. 2009b). Ants do not respond to

elevation per se; elevation is only a surrogate for a

variety of factors that shape diversity gradients (Körner

2007; Dunn et al. 2009b). Nevertheless we introduced

this environmental variable to examine how it is linked

to other habitat features (e.g. litter, shrubs, etc.).

Altitude at both of our field sites was correlated with

steep slopes and bare rock areas, two environmental

features that could negatively influence local ant

species richness by limiting potential nest sites.

A case point in the results is cluster E. Although it is

characterized by a high structural complexity and a

low altitude it had the lowest species richness of all

clusters. Habitat complexity is known to be an

important factor driving species richness and commu-

nity composition in ants (Lassau and Hochuli 2004). It

has generally been found that species richness corre-

lates positively with the complexity of the environ-

ment (Andersen 1986; McCoy and Bell 1991). Our

results however do not seem to fit with this general

observation. Clusters with greater ant diversity in our

study indeed were simple from a structural point of

view (see cluster B corresponding mainly to grassland

areas). A similar result has been found by Lassau and

Hochuli (2004) and Lassau et al. (2005) in their study

of Australian ant communities. The two explanations

provided by these authors to account for this result can

also hold for our study. The first explanation is related

to the locomotory behaviour of ants. The movements

of ants are known to be more efficient and less

constrained in simple than in complex environments

(Kaspari and Weiser 1999). In simple environments,

ants can move quickly, easily recruit nestmates, and

defend/monopolize food sources efficiently against

competitors and colonies can therefore develop more

quickly. The second explanation is related to temper-

ature. Sites with a dense canopy cover are likely to be

cooler than sites exposed to direct sunlight. Since ants

are thermophilic animals, a reduction in ground

temperature could therefore reduce ant foraging

activity and thus slow down or impede the develop-

ment of ant colonies (Brown 1973; Cerda et al. 1998;

Lessard et al. 2009).

Along with cluster B, Cluster D was also one of the

clusters characterized by a relatively high species

diversity. This is probably explained by the fact that it

corresponds to transitional areas between hardwood

forests and grassland. Ecotones are indeed known to

have a positive effect on species richness (Risser 1995).

An explanation for this is that an ecotone not only has its

own characteristics (composition and structure) but also

share the characteristics of both adjacent habitats (Risser

1995). Previous studies on ‘‘edge effect’’ however have

led to conflicting results (e.g. in insects: Dauber and

Wolters 2004) and the results of the present study would

thus need to be confirmed.

SOM have already been applied successfully on ants

to investigate the efficiency of sampling methods (Groc

et al. 2007), the ecological impact of land use by

Amerindians on ant diversity (Delabie et al. 2009), or

the impact of ant-plant mutualism on the diversity of

invertebrate communities (Céréghino et al. 2010). We

show here that the use of SOM can in addition be useful

to study the response of ant functional groups to

environmental variables and land-cover features. This

technique can explore large and complex datasets and

thus can be used as an efficient tool in community

ecology to define the characteristics of the ecological

niche of each species (Groc et al. 2007; Céréghino et al.

2010). By using SOM we were able in addition to point

out the sites of greater ant biodiversity in our study area.

Environmental variables were used to characterize the

landscape around each sampling points. However,

information on coverage protected areas (see Hopton

and Mayer 2006) could also have been introduced into

the SOM. This could help to find out if clusters with high

species richness overlap with protected areas (Hopton

and Mayer 2006). This illustrates another important

asset of SOM: because it provides information on the

relationship between species distribution and habitat

characteristics, SOM can be particularly helpful in

targeting the areas in which to focus conservation effort.
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