
HAL Id: hal-02450949
https://univ-tlse2.hal.science/hal-02450949

Submitted on 23 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Highly variable species distribution models in a
subarctic stream metacommunity: patterns, mechanisms

and implications
Guillermo de Mendoza, Riikka Kaivosoja, Mira Grönroos, Jan Hjort, Jari
Ilmonen, Olli-Matti Kärnä, Lauri Paasivirta, Laura Tokola, Jani Heino

To cite this version:
Guillermo de Mendoza, Riikka Kaivosoja, Mira Grönroos, Jan Hjort, Jari Ilmonen, et al.. Highly
variable species distribution models in a subarctic stream metacommunity: patterns, mechanisms and
implications. Freshwater Biology, 2018, 1 (63), pp.33-47. �10.1111/fwb.12993�. �hal-02450949�

https://univ-tlse2.hal.science/hal-02450949
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Highly variable species distribution models in a subarctic stream 1 

metacommunity: patterns, mechanisms and implications  2 

 3 

Guillermo de Mendoza1,2,*, Riikka Kaivosoja3, Mira Grönroos4, Jan Hjort3, Jari Ilmonen5, 4 

Olli-Matti Kärnä3, Lauri Paasivirta6, Laura Tokola3 & Jani Heino7 5 

 6 

1Centre for Advanced Studies of Blanes, Spanish National Research Council (CEAB-CSIC), 7 

Accés a la Cala St. Francesc 14, ES-17300 Blanes, Spain. 8 

2Laboratoire GEODE, UMR 5602 CNRS, Université Toulouse-Jean Jaurès, 5 allées Antonio 9 

Machado, FR-31058 Toulouse, France. 10 

3University of Oulu, Geography Research Unit, P.O. Box 3000, FI-90014 Oulu, Finland. 11 

4University of Helsinki, Department of Environmental Sciences, Section of Environmental 12 

Ecology, Niemenkatu 73, FI-15140 Lahti, Finland. 13 

5Metsähallitus, Natural Heritage Services, P.O. Box 94, FI-01301 Vantaa, Finland. 14 

6Ruuhikoskenkatu 17, FI-24240 Salo, Finland. 15 

7Finnish Environment Institute, Natural Environment Centre, Biodiversity, Paavo Havaksen 16 

Tie 3, FI-90570 Oulu, Finland.  17 

* Corresponding author: guillermo.de-mendoza@univ-tlse2.fr  18 

19 

mailto:guillermo.de-mendoza@univ-tlse2.fr


Summary 20 

1. Metacommunity theory focuses on assembly patterns in ecological communities, 21 

originally exemplified through four different, yet non-exclusive, perspectives: patch 22 

dynamics, species sorting, source-sink dynamics, and neutral theory. More recently, three 23 

exclusive components have been proposed to describe a different metacommunity 24 

framework: habitat heterogeneity, species equivalence, and dispersal. Here, we aim at 25 

evaluating the insect metacommunity of a subarctic stream network under these two 26 

different frameworks.  27 

2. We first modelled the presence/absence of 47 stream insects in northernmost Finland 28 

using binomial generalised linear models (GLMs). The deviance explained by pure local 29 

environmental (E), spatial (S), and climatic variables (C) was then analysed across 30 

species using beta regression. In this comparative analysis, site occupancy, as well as 31 

taxonomic and biological trait vectors obtained from principal coordinate analysis, were 32 

used as predictor variables. 33 

3. Single-species distributions were better explained by in-stream environmental and spatial 34 

factors than by climatic forcing, but in a highly variable fashion. This variability was 35 

difficult to relate to the taxonomic relatedness among species or their biological trait 36 

similarity. Site occupancy, however, was related to model performance of the binomial 37 

GLMs based on spatial effects: as populations are likely to be better connected for 38 

common species due to their near ubiquity, spatial factors may also explain better their 39 

distributions. 40 

4. According to the classical four-perspective framework, the observation of both 41 

environmental and spatial effects suggests a role for either mass effects or species sorting 42 

constrained by dispersal limitation, or both. Taxonomic and biological traits, including 43 

the different dispersal capability of species, were scarcely important, which undermines 44 



the patch dynamics perspective, based on differences in dispersal ability between species. 45 

The highly variable performance of models makes the reliance on an entirely neutral 46 

framework unrealistic as well. According to the three-component framework, our results 47 

suggest that the stream insect metacommunity is shaped by the effect of habitat 48 

heterogeneity (supporting both species-sorting and mass effects), rather than species 49 

equivalence or dispersal limitation. 50 

5. While the relative importance of the source-sink dynamics perspective or the species-51 

sorting paradigm cannot be deciphered with the data at our disposal, we can conclude that 52 

habitat heterogeneity is an important driver shaping species distributions and insect 53 

assemblages in subarctic stream metacommunities. These results exemplify that the use of 54 

the three-component metacommunity framework may be more useful than the classical 55 

four perspective paradigm in analysing metacommunities. Our findings also provide 56 

support for conservation strategies based on the preservation of heterogeneous habitats in 57 

a metacommunity context. 58 
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Introduction 64 

Metacommunity theory predicts the assembly of ecological communities according to 65 

different perspectives. Originally, this idea was illustrated by Leibold et al. (2004) in the form 66 

of four metacommunity perspectives: (1) patch dynamics, which is based on a resource 67 

competition-colonisation trade-off among species, thus taking into account species’ dispersal 68 

potential (Hanski, 1994); (2) species-sorting along environmental gradients, which relies on 69 

differences in environmental tolerance among species (Leibold, 1995); (3) mass effects or 70 

source-sink dynamics, whereby species may survive in poor-quality habitats owing to 71 

constant immigration from the source populations in high quality habitats (Pulliam 1988); 72 

and (4) the neutral theory, where demographic stochasticity solely explains assembly patterns 73 

(Hubbell, 2001). Deciphering which of these perspectives is more suitable in the context of 74 

metacommunity analysis seems difficult and may well depend on the context of analysis (e.g. 75 

spatial extent, biogeographic region, ecosystem type and more; Heino et al., 2015). 76 

Nevertheless, the examples of metacommunity perspectives depicted in Leibold et al. 77 

(2004) are not mutually exclusive, and represent a fraction of possibilities which can be 78 

expanded with the inclusion of species dispersal rates, connectivity, species interactions, 79 

disturbance, priority effects, rapid local adaptation, meta-ecosystem dynamics and more 80 

(Brown, Sokol, Skelton, & Tornwall, 2017; Logue, Mouquet, Peter, & Hillebrand, 2011). The 81 

more recent proposal by Logue et al. (2011) claims that the metacommunity concept is better 82 

generalised by three major exclusive components, which decompose the metacommunity 83 

framework into (1) environmental heterogeneity, whereby habitat patches differ in 84 

environmental attributes; (2) species equivalence, in terms of niche characteristics; and (3) 85 

dispersal, referred to as the rate of dispersal among patches. Here, we aim at evaluating 86 

species distributions in a subarctic stream insect metacommunity under these two different 87 



frameworks (i.e., Leibold et al., 2004 versus Logue et al., 2011), specifically so as to evaluate 88 

which of the two is more adequate for the interpretation of our observations. 89 

Species distribution models have previously been used to predict community-level 90 

properties such as biodiversity (Ferrier & Guisan, 2006). Their accuracy in predicting 91 

community-level properties appears to be higher than that of community assembly models, 92 

although at a high cost in terms of model complexity (Bonthoux, Baselga, & Balent, 2013, 93 

Chapman & Purse, 2011). The accuracy of single-species distribution modelling, however, 94 

may also be advantageous to test ecological theories about community assembly mechanisms. 95 

This is because accurately modelling the distribution of single species, one at a time, provides 96 

the opportunity to proceed with a subsequent comparative analysis across species. Using a 97 

comparative analysis, the variation in model performance can be related, for example, to 98 

species traits and potential phylogenetic constraints.  99 

Stream insect species, in particular, are highly suitable to decipher community 100 

assembly processes through the comparative analysis of single-species distribution models 101 

(Heino & de Mendoza, 2016). This is because of the high variability among species in 102 

tolerance of environmental conditions, as well as resource exploitation, dispersal capability, 103 

and habit traits (Merritt & Cummins, 1996; Tachet, Richoux, Bournaud, & Usseglio-Polatera, 104 

2010; Schmidt-Kloiber & Hering, 2015; Serra, Cobo, Graça, Dolédec, & Feio, 2016). This 105 

variability is valuable in evaluating which community assembly mechanism dominates in 106 

each particular context of analysis. Basically, such an analysis might shed light into the 107 

relevance of environmental variables, spatial variables, and dispersal capability of species on 108 

model performance. Subsequently, this information can be used as an indicator of the 109 

preponderance of one community assembly mechanism over another (Figure 1). For example, 110 

if many species show similar spatial patterns, and if these species share the same dispersal 111 

potential, we can presume that the ability to disperse may be underlying the observed general 112 



pattern for these species. This would give us hints about the adequacy to consider one 113 

particular metacommunity theory perspective over the others. Within the classical four-114 

perspective framework (Leibold et al., 2004), patch dynamics would likely be suitable in this 115 

case, as this perspective relies on the different capability of species to both disperse and 116 

exploit resources. Within the metacommunity framework based on three exclusive 117 

components (Logue et al., 2011), dispersal would be main driver in this case. Moreover, 118 

stream insects are also a diverse group of species, which belong to different insect orders and 119 

vary widely in physiological and morphological adaptations (Merritt & Cummins, 1996). 120 

Thus, modelling the distribution of single stream insect species and subsequently proceeding 121 

with a comparative analysis across species is also a suitable indirect practice to explore 122 

possible evolutionary constraints on community assembly processes.  123 

In this study, we analysed the distribution of common stream insect species in the 124 

metacommunity of a subarctic drainage basin. Species differ widely in their dispersal 125 

capability (e.g. passive or active dispersers, aquatic or aerial adults) and tolerance of 126 

environmental conditions such as temperature, water flow, or habitat characteristics 127 

(Grönroos et al., 2013; Heino, 2005; Heino & Grönroos, 2014). We used environmental, 128 

climatic and spatial variables as predictors of the distributions of single stream insect species. 129 

Our aim was to elucidate, first, whether or not environmental and spatial factors are relevant 130 

for explaining the distribution of stream insect species; and second, whether or not the 131 

obtained models can be related to the different dispersal capability, site occupancy (i.e.  a 132 

gradient of rarity-commonness), and biological and taxonomic traits, of stream insect species. 133 

Both considerations were used to evaluate which of the two different metacommunity 134 

frameworks, either the one based on four non-exclusive perspectives (Leibold et al., 2004) or 135 

the one based on three exclusive axes (Logue et al., 2011), is more adequate to interpret our 136 

observations of single species distributions in stream networks (Figure 1). 137 



 138 

Methods 139 

Study area 140 

The field work for this study (Fig. S1) was conducted in the Tenojoki drainage basin (main 141 

stem length: 361 km, basin area: 16377 km2, altitude of sites: from 19 to 285 m a.s.l.) in 142 

northernmost Finland (70oN, 27oE). This subarctic drainage basin is close to a natural state, 143 

since it is characterised by very small human populations and subsequent little impact from 144 

human development. A typical feature of the area are short cool summers and long cold 145 

winters (from early November to end of May). The mean annual temperature is about -2oC in 146 

the continental areas of the drainage basin, and close to 0oC near the Arctic Ocean (Dankers 147 

& Christensen, 2005). Annual precipitation ranges from 310 mm to 410 mm depending on 148 

the location in the drainage basin (Mansikkaniemi, 1970). Most of the rainfall and snowmelt 149 

enters streams and rivers, as evaporation is generally of minor importance. Vegetation is 150 

dominated by mountain birch (Betula pubescens ssp. czerepanowii) woodlands at low altitude 151 

and barren tundra at higher altitude, but also peatlands, heathlands and riparian meadows 152 

occur commonly. Coniferous pine (Pinus sylvestris) woodlands occur only in scattered 153 

locations, mostly in the southern parts of the drainage basin. Wadeable streams and rivers 154 

(i.e. channel width < 25 m, water depth < 50 cm) in the area are close to a pristine state, 155 

providing excellent possibilities for examining species distributions in natural environmental 156 

conditions. We sampled altogether 55 tributary streams for this study (for details, see Kärnä 157 

et al., 2015). All these 1st to 5th order tributaries drain into the mainstem of the River 158 

Tenojoki or the River Utsjoki, and no site is located in the two mainstem rivers (Fig. S1). 159 

 160 

Field sampling of stream insects 161 



We took a 3-minute kick-net sample (net mesh size: 0.3 mm) at each study site (Kärnä et al., 162 

2015) at the same time with the environmental measurements in early and middle of June 163 

2012 (see below). The sample for each site consisted of six 30-s subsamples that were 164 

divided between main habitats at a riffle site (ca. 50 m2) based on visual inspections of 165 

variation in depth, flow, moss cover and particle size. The six subsamples were pooled in the 166 

field to obtain a composite sample. Such a sampling method has been shown to be effective 167 

in northern streams, allowing to detect patterns in community structure (Heino, Ilmonen, & 168 

Paasivirta, 2014) and distributions of single species (Heino & de Mendoza, 2016). Samples 169 

were immediately preserved in ethanol in the field and were taken to the laboratory for 170 

further processing and identification. Animals were separated from detritus and moss 171 

fragments and identified to the lowest possible taxonomic level, mostly species (Kärnä et al., 172 

2015).  173 

 174 

Species considered and species traits 175 

We detected 107 insect taxa, of which 87 could be taxonomically determined to species or 176 

species group (Kärnä et al., 2015). Insects determined to genus level were discarded as they 177 

were considered too likely to include a few species, which is inappropriate to model single-178 

species distributions. Then, we focused on 48 species that occurred at more than 10% of the 179 

55 study sites, that is, that occurred in at least six sites. This is because modelling the 180 

distribution of species present in less than six sites is likely to produce spurious results and 181 

therefore the analysis of these species was considered unreliable (e.g. Pearce & Ferrier, 182 

2000). In practice, we could model the occupancies of only 47 species because the mayfly 183 

Baetis rhodani occurred at all sites, so we could not use this species to model 184 

presence/absence. The 47 stream insect species considered in this study are listed in Table S1. 185 



Nomenclature generally follows de Jong et al. (2014) and more specific references for the 186 

Simuliidae (Adler & Crosskey, 2016 ; Ilmonen, 2014).  187 

Body size class, dispersal potential, functional feeding groups and habit trait groups 188 

were considered as species traits (Table S2). Functional feeding groups refer to exploitation 189 

of different resources, while habit traits define modes of locomotion and attachment to 190 

substrate (Merritt & Cummins, 1996). Body size classes and female dispersal potential 191 

followed a previous study (Heino & de Mendoza, 2016), with additional information from 192 

Tachet et al. (2010), Schmidt-Kloiber & Hering (2015) and Serra et al. (2016). Female 193 

dispersal potential was characterised as being “low” or “high”. In general, all species of the 194 

Simuliidae were considered to have high dispersal potential, owing to the fact that their 195 

females feed as flying adults, in most cases searching for blood of vertebrates, and hence 196 

were assumed here to generally persist much longer as active flyers than the rest of species. 197 

In this regard, Baldwin, West, and Gomery (1975) often found their marked Simuliidae 198 

females several kilometers away from their natal streams. Owing to their small size, the 199 

Simuliidae may also be distributed long distances passively by wind (Crosskey, 1990). All 200 

other species were considered as weak dispersers except for the caddisflies Plectrocnemia 201 

conspersa and Potamophylax cingulatus, according to the information available for these taxa 202 

from previous studies (Gíslason, Hannesdóttir, Munoz, & Pálsson, 2015; Hoffsten, 2004; 203 

Müller-Peddinghaus, 2011; Müller-Peddinghaus & Hering, 2013; Schmidt-Kloiber & Hering, 204 

2015). Although such information about dispersal abilities of stream insects is rather simple, 205 

there is currently no better information available (Schmidt-Kloiber & Hering, 2015; Serra et 206 

al., 2016; Tachet et al., 2010). Functional feeding and habit trait groups generally follow 207 

Merritt & Cummins (1996). 208 

 209 

Local environmental, climatic, and spatial variables 210 



The 55 streams were surveyed during the early northern summer, between early and middle 211 

of June in 2012. We measured a set of local (i.e. proximal) environmental variables that have 212 

been found important for stream insects in northern drainage basins in previous studies 213 

(Heino et al., 2014; Kärnä et al., 2015). These comprised physical habitat and water physico-214 

chemical variables. For physical habitat variables, we measured current velocity (m/s) and 215 

depth (cm) at 30 random spots in a riffle site. We also measured mean width of the riffle site 216 

based on five cross-channel measurements, evenly spaced across the surveyed riffle site. 217 

Bank height and bank slope were measured at the same locations with stream width 218 

measurements. Bank height was measured as the height of the lower stream bank, i.e. the 219 

height from the water level to the edge of terrestrial vegetation. Bank slope was measured 220 

(perpendicular to the stream) as a stream bank rise (cm) over 2 m starting from the edge of 221 

terrestrial vegetation. Moss cover (%) and particle size classes (%) were visually estimated at 222 

10 squares (1 m2) at random locations in a riffle site. We used a modified Wentworth’s 223 

(1922) scale of particle size classes: sand (0.25–2 mm), gravel (2–16 mm), pebble (16–64 224 

mm), cobble (64–256 mm) and boulder (256–1,024 mm). Based on the visual estimates for 225 

each square, we calculated mean values for each particle size class and moss cover at a site 226 

and used these mean values in species distribution modelling. We also visually estimated 227 

shading (%) by riparian vegetation and proportion of riparian deciduous trees (%). For 228 

physico-chemical properties, we measured pH, conductivity and water temperature at each 229 

site in the field using a YSI device model 556 MPS (YSI Inc., Ohio, USA) and took 230 

additional water samples during the field campaign for further analysis. Water samples were 231 

frozen at the end of the day at the Kevo Field Station situated in the northern part of the study 232 

area, and were later analysed for total nitrogen, colour, iron and manganese in the laboratory 233 

of the Finnish Environment Institute in Oulu following Finnish national standards (National 234 

Board of Waters, 1981). 235 



We also included three climatic variables, including annual air temperature sum above 236 

5oC (growing degree days), mean annual air temperature and mean July air temperature for 237 

the period 1981–2010. These variables were calculated in ArcMap 10.2 for each site from a 238 

gridded (1 x 1 km) climate data provided by the Finnish Meteorological Institute (Pirinen et 239 

al., 2012). The gridded climate data were produced using meteorological station observations 240 

and Kriging interpolation (e.g. Aalto, Pirinen, Heikkinen, & Venäläinen, 2013). The selected 241 

climatic variables are likely to be important for the distributions of insects in this subarctic 242 

area, where temperature is closely associated with insect life cycles (Danks, 2007). 243 

Spatial variables were distance-based Moran’s Eigenvector Maps (db-MEM) based on 244 

geographical distances among sites (Dray, Legendre & Peres-Neto, 2006). These spatial db-245 

MEM variables were obtained with the function “PCNM” of the R package “PCNM” 246 

(Legendre, Borcard, Blanchet, & Dray, 2013; R Core Team, 2013). We used the largest 247 

distance in the minimum spanning tree, keeping all sites connected, as the truncation 248 

threshold. Spatial db-MEM variables represent structures of autocorrelation at all spatial 249 

scales. Only those spatial db-MEM variables showing significant positive autocorrelation 250 

were included in subsequent modelling (Borcard, Gillet & Legendre, 2011), resulting in 13 251 

spatial variables (Figure 2). Based on eigenvalues and bubble plot maps, the spatial variables 252 

can be divided into those ranging from large-scale spatial structures (e.g. V1, V2) and those 253 

showing very small scale spatial patterns (e.g. V12, V13). 254 

Prior to modelling species distribution, we eliminated strongly correlated (i.e. Pearson 255 

r > .7) predictor variables from the sets of local environmental and climatic variables (see 256 

Dormann et al., 2013). Hence, we removed one variable (i.e. annual temperature sum) from 257 

the climatic variables and four variables (i.e. water iron, colour, conductivity and boulders) 258 

from the stream environmental variables. The spatial variables were already not mutually 259 

correlated (Borcard et al., 2011). 260 



 261 

Modelling species distributions 262 

The distribution (i.e. presence/absence) of each species was modelled using binomial 263 

generalised linear models (i.e. binomial GLMs with logit link function), using separately 264 

local environmental, climatic and spatial variables, with the R package “Rcmdr” (Fox, 2005). 265 

The deviance explained for each species was thus obtained for each binomial GLM with each 266 

of these three different subsets of variables (Figure 2). The variables selected for each 267 

species’ model were based on forward selection and Bayesian Information Criterion (BIC), 268 

separately for each variable group (i.e. environmental, climate and spatial). BIC values were 269 

used because they prevented the selection of too complex models in our case, in contrast to 270 

AIC (results not shown), which is often the case under large sample sizes (Burnham & 271 

Anderson, 2004). Moreover, the target model under BIC selection does not depend on sample 272 

size, in contrast to AIC (Burnham & Anderson, 2004). Therefore, AIC may be problematic in 273 

our case as we aim at comparing model performance between species, which may differ in 274 

the number of presences and absences. Also, deviating observations were removed from 275 

some species’ models if they had Cook’s distance values > 1 and hence affected profoundly a 276 

few models (Cook, 1977). For environmental variables, we registered whether the effect was 277 

positive or negative on species distributions. We then used the selected variables of these 278 

three subsets (i.e. local environmental, climatic and spatial) to perform variation (deviance) 279 

partitioning by subtraction, similarly as performed in multivariate contexts (Legendre & 280 

Legendre, 2012). Specifically, the deviance accounted for subset A, subset B, and subset A 281 

and B together, was computed, so as to obtain the different fractions of variation solely 282 

explained by each subset (i.e. unshared with other subsets). We eventually obtained adjusted 283 

D2 values (Guisan & Zimmermann, 2000; Legendre & Legendre, 2012) which could be 284 

attributed to pure local environmental (E), climatic (C) or spatial effects (S), as well as to 285 



total effects combining the three subsets of pure effects and their joint effects (E+C+S 286 

effects; Figure 2). Modelling methods other than GLMs could have been possible, yet species 287 

probably show linear responses to the environmental predictors due to the fact that they are 288 

on the edge of their geographical and ecological distributions, making GLMs adequate. 289 

Adding quadratic terms to binomial models is unlikely to change results substantially in these 290 

situations (e.g. Pulido, Riera, Ballesteros, Chappius, & Gacia, 2015), and increase the 291 

difficulty of interpretation of the results. Also, deviance partitioning is easy to accomplish 292 

when this is based on GLMs.  293 

 294 

Comparative analysis across species 295 

We performed a comparative analysis across species using beta regression (Ferrari & Cribari-296 

Neto, 2004), where the adjusted D2 values obtained with previous binomial GLMs were used 297 

as the dependent variable to be explained by site occupancy, taxonomic vectors or species 298 

trait vectors (Figure 2). These vectors were obtained separately from Principal Coordinate 299 

Analysis (PCO). Using the taxonomic relatedness of species, a taxonomic relatedness matrix 300 

was built using the function “taxa2dist” in the R package “vegan” (Oksanen et al., 2013), and 301 

taxonomic vectors were handled as continuous PCO vectors with the function “pco” in the R 302 

package “ecodist” (Goslee & Urban, 2007). The first four taxonomic eigenvectors were 303 

selected as these had much higher eigenvalues than the rest (Fig. S2). Similarly, species trait 304 

vectors were also computed using body size class, dispersal potential, functional feeding 305 

groups, and habit trait groups (Table S2). Species traits were considered as regular factors, 306 

except body size class which was considered as an ordered factor, to obtain a distance matrix 307 

based on Gower’s metric with the function “daisy” of the R package “cluster” (Maechler, 308 

Rousseeuw, Struyf, Hubert, & Hornik, 2013), and eventually trait PCO vectors with the 309 

function “cmdscale”. The four trait eigenvectors obtained were considered for further 310 



statistical analyses. The variation in adjusted D2 values across species that could be attributed 311 

to pure E, pure C, pure S, or E+C+S effects was fitted on site occupancy, the four taxonomic 312 

and four species trait vectors selected, using beta regression with the function “betareg” of 313 

the R package “betareg” (Cribari-Neto & Zeileis, 2010). Beta regression is adequate when the 314 

response variable (in this case, the adjusted D2 values) is constrained between 0 and 1. 315 

We compared the explained variation by pure E, C, and S effects with a Kruskal-316 

Wallis test, with additional Mann-Whitney tests for subsequent pair-wise comparisons 317 

between groups. Non-parametric tests were chosen since adjusted D2 values data departed 318 

from normality following the Shapiro-Wilk test (Zar, 1984). We also analysed the univariate 319 

relationships between site occupancy, body size, dispersal potential, broad taxonomic insect 320 

groups, functional feeding groups, habit trait groups, and taxonomic and trait vectors. 321 

Depending on the continuous (e.g. site occupancy) or categorical (e.g. habit trait group) 322 

nature of the variables involved, we followed Kruskal-Wallis tests, Mann-Whitney tests, 323 

Fisher’s exact test or Spearman correlations, as these variables were generally not normally 324 

distributed (Zar, 1984). 325 

 326 

Results 327 

Single species models 328 

Local environmental and spatial effects accounted for a higher variation in species 329 

distributions (16.1% and 12.6% in average, respectively) than did climatic effects (5.4%; p < 330 

.001, Kruskal-Wallis test), whereas the average deviance explained did not differ 331 

significantly between local environmental and spatial effects (p = .125, Mann-Whitney test) 332 

(Table S3). The local environmental factors most frequently selected in explaining species 333 

distributions were water temperature, shading, and to a lesser extent, stream width, cobbles 334 

and moss (Figure 3). The spatial variables most often selected were better represented by 335 



large-scale spatial variables within the Tenojoki drainage basin (e.g. V1, V2) than by small-336 

spatial scale variables (e.g. V12, V13), as also shown in Figure 3. Amongst the climate 337 

variables, mean annual temperature was significant in explaining the distribution of 32 338 

species, and July air temperature of 20 species (not shown in Fig. 3). 339 

The adjusted deviance explained by binomial GLMs was highly variable across 340 

species and difficult to relate to particular taxonomic groups (Table S3). For example, local 341 

environmental effects were particularly relevant for the stonefly Siphonoperla burmeisteri 342 

(i.e. accounting for 66.7% of adjusted D2 values), the mayfly Heptagenia dalecarlica 343 

(50.2%), and the blackfly Prosimulium hirtipes (37.7%), whereas spatial effects were most 344 

relevant for the caddisfly Rhyacophila nubila (41.2%), the stonefly Brachyptera risi (31.5%), 345 

and the chironomid midge Cardiocladius capucinus (28.6%). Climate effects were also 346 

highly variable. They were generally low (see above), and accounted for more than 20% of 347 

adjusted D2 values in only three cases: the stoneflies Diura nanseni and Siphonoperla 348 

burmeisteri (34.4% and 20.1%, respectively), and the chironomid midge Orthocladius 349 

rivicola (28.9%). Combining all effects, binomial GLMs explained on average 37.8% of the 350 

null deviance (Table S3). 351 

 352 

Comparative analysis across species models 353 

The highly variable species-local environment and species-climate relationships in binomial 354 

GLMs were not accounted for by site occupancy, or by taxonomic and trait vectors, in the 355 

beta regression analysis (Table 1). The deviance explained by spatial variables was, however, 356 

significantly (i.e. p < .05) accounted for by site occupancy (Table 1). The influence of TAX-357 

PCO4 and TRA-PCO2 on the adjusted D2 values predicted by spatial effects in binomial 358 

GLMs was significant as well. Also, the influence of TAX-PCO3 was marginally significant 359 

(i.e. p < .10), remaining like this in the binomial GLMs based on all variables combined 360 



(Table 1). However, when repeating the beta regression analysis by using only the significant 361 

variables selected (i.e. site occupancy, TAX-PCO3, TAX-PCO4, and TRA-PCO2), only site 362 

occupancy was statistically significant (p = .017), but not TAX-PCO3, TAX-PCO4 or TRA-363 

PCO2 (p = .943, p = .175, and p = .449, respectively, results not shown in Table 1). 364 

Analysing through beta regression the univariate relationship of these variables with the 365 

adjusted D2 values of binomial GLMs based on spatial effects produced a similar result (site 366 

occupancy, p = .036, Fig. S3; TAX-PCO3, TAX-PCO4, and TRA-PCO2, p = .760, p = .660, 367 

and p = .524, respectively, results not shown). This univariate relationship between the 368 

adjusted D2 values and site occupancy was not observed when the adjusted D2 values of 369 

binomial GLMs were referred to environmental or climate effects (Fig. S3). No statistical 370 

significance was observed either for univariate relationships between separate species traits 371 

and the adjusted D2 values in binomial GLMs, with the sole exception of body size (Fig. S3).  372 

The TAX-PCO3 vector showed the highest species scores for blackflies (Simuliidae) 373 

and the lowest for mayflies (Ephemeroptera), and was strongly correlated (p < .001) to 374 

dispersal potential (Table S5, Figure 4a). In contrast to this taxonomic vector, TAX-PCO4 375 

showed the highest species scores for both blackflies and mayflies (Figure 4b), and was 376 

strongly correlated to site occupancy (p = .007, Table S5). Finally, TRA-PCO2 reflects the 377 

influence of functional feeding groups and body size on model performance (Figure 4c), as 378 

indicated by the strong correlation of both variables (i.e. p < .001) with this trait vector (Table 379 

S5). 380 

 381 

Discussion  382 

Single species models 383 

Our results indicated that single species distributions of stream insects are highly variable in 384 

terms of predictability, as well as the significant environmental and spatial predictors 385 



underlying such distributions. There was no evident association between model accuracy and 386 

particular taxonomic groups (Table S3). Nevertheless, a few generalisations can be 387 

highlighted with regard to the results obtained. For example, water temperature and shading, 388 

and to a lesser extent, stream width, cobbles and moss, were more relevant as environmental 389 

predictors of species distributions than stream flow or water chemistry variables (Table S3, 390 

Figure 3). This is in line with the well-known influence of temperature and resource 391 

availability on insect life cycles at high latitudes (Danks, 2007) and indicates the influence of 392 

species sorting processes along these environmental gradients. Resource availability is 393 

represented in our case by shading, which indicates the proximity of terrestrial vegetation and 394 

hence is a surrogate of availability of allochthonous resources from terrestrial origin for 395 

aquatic insect larvae. This typically corresponds with a situation of a low-order stream which, 396 

as in our case, is influenced strongly by terrestrial material from riparian vegetation which is 397 

then taken as food resource by shredders, hence promoting their dominance (Vannote, 398 

Minshall, Cummins, Sedell, & Cushing, 1980). Shading may also be inversely related to 399 

primary productivity, but in this study, we found that the relationship of species distribution 400 

with shading was always positive (Figure 3), suggesting that rather than biofilm production, it 401 

is the external input of terrestrial material from riparian birch tree abundance what is likely 402 

driving species distributions. In our case, shading was selected as a significant variable in 403 

binomial models for some predators (Isoperla difformis and Plectrocnemia conspersa) and 404 

shredders (Leuctra spp.), for some collector-gatherers (Corynoneura lobata-type, 405 

Eukiefferiella devonica-group, Orthocladius rhyacobius-group and Tvetenia discoloripes), 406 

and for some collector-filterers (Philopotamus montanus and Prosimulium hirtipes) (Table 407 

S3). These latter groups perhaps benefit indirectly from the increase in potential resources 408 

that the variable “shading” represents for shredders, for example, through the enhancement of 409 



nutrient re-cycling by shredding coarse plant litter (Covich, Palmer, & Crowl, 1999; Wallace 410 

& Webster, 1996).  411 

Spatial variables were also relevant for the distributions of some species. Specifically, 412 

large-scale spatial variables were more important than small-scale variables in explaining 413 

species distributions in our study (Table S3, Figure 3). At a larger spatial extent (ca. 500 km 414 

latitudinal gradient), previous findings indicate a stronger relevance of environmental factors, 415 

compared to spatial restrictions, on single-species distributions (Heino & de Mendoza, 2016). 416 

This is perhaps not surprising because increasing the spatial extent may have a strong positive 417 

effect on the relevance of niche processes through larger environmental gradients (Chase, 418 

2014). However, increasing the spatial extent may also preclude species to reach 419 

environmentally suitable locations owing to dispersal limitation, and thus the relative 420 

contribution of both environmental and spatial constraints on species distributions does not 421 

always vary predictably with spatial scale (Alahuhta & Heino, 2013).  422 

 423 

Comparative analysis across species  424 

Comparative analysis across the species models showed a clear relationship between model 425 

performance and site occupancy. Specifically, the binomial GLMs that we built upon spatial 426 

variables could be related to site occupancy, and to a lesser extent, to taxonomic and trait 427 

vectors, whereas none of these variables was significantly related to model performance 428 

when models were based on local environmental or climate variables (Table 1). At first 429 

glance, our results also suggested both a slight influence of female dispersal potential (related 430 

to the taxonomic vector TAX-PCO3), and a potential influence of functional feeding groups 431 

and body size (related to the trait vector TRA-PCO2), on the performance of models based on 432 

spatial variables. The taxonomic vector TAX-PCO3 perhaps relates to female dispersal 433 

potential, as species scores along this vector were much higher for the blackflies than for the 434 



rest of species, and lowest for the mayflies (Figure 4). Blackflies are possibly the best active 435 

dispersers among all the insects we considered, because females feed as flying adults and in 436 

most species they must actively search for blood meals, often several kilometers away from 437 

their natal streams (Baldwin et al., 1975). However, adult mayflies, do not feed and often 438 

have extremely short life spans (Brittain, 1990). Therefore, it seems reasonable to assume that 439 

blackflies may actively disperse better than mayflies. Site occupancy and dispersal potential 440 

were not correlated (Table S5), and both taxa were the ones with highest number of sites 441 

occupied (Fig. S4). In contrast, mayflies differed in site occupancy from non-biting midges 442 

(Chironomidae) (Fig. S4), despite species in both groups can be considered weak active 443 

dispersers, as chironomid adults are also short-lived and generally weak active fliers 444 

(Armitage, 1995). On the other hand, the trait vector TRA-PCO2 suggests an influence of 445 

feeding behaviour and body size (Figure 4, Table S5) on model performance. This is because 446 

the exploitation of food resource from terrestrial origin (i.e. shredders) would facilitate the 447 

development of more complex trophic food webs with the inclusion of predators (Figure 4). 448 

This would also contribute to the positive association of body size to TRA-PCO2 (Fig. 4), as 449 

the largest insects we found are either predators or shredders (Table S2). 450 

Nevertheless, it is important to note that taxonomic and trait vectors had a 451 

comparatively much weaker effect on predictability by spatial variables than that of site 452 

occupancy. In fact, not only did site occupancy attain a higher statistical significance (Table 453 

1), but it could also be partly related to the capability of the taxonomic vector TAX-PCO4 to 454 

account for the adjusted D2 values of binomial GLMs because these two predictor variables 455 

were significantly correlated (Table S5). Moreover, when repeating the beta regression 456 

analysis by using only the significant variables selected (i.e. site occupancy, TAX-PCO3, 457 

TAX-PCO4, and TRA-PCO2), only site occupancy was statistically significant, indicating 458 

that the influence of taxonomic and trait vectors on model performance is rather weak. 459 



Analysing through beta regression the univariate relationship of these variables with the 460 

adjusted D2 values of binomial GLMs based on spatial effects again resulted in site 461 

occupancy as the only significant variable (see Results above). Therefore, we must conclude 462 

that any potential effect of taxonomic and trait vectors on model performance, including the 463 

effect of female dispersal potential and body size, and that of functional feeding groups, must 464 

be considered with caution: their statistical significance only appears after controlling for site 465 

occupancy and the other variables considered in the full model of beta regression. In this 466 

regard, the fact that Baetis rhodani is a widespread mayfly, which could not be modelled 467 

because it was present at all sites, also gives support to the idea that dispersal abilities are not 468 

so important in structuring invertebrate assemblages in high-latitude drainage basins. This is 469 

because it demonstrates that mayfly species can be widespread, despite being rather weak 470 

active dispersers. We also acknowledge that the rarest species (i.e. present in less than six 471 

sites) were not modelled because models based on such small number of presences were 472 

considered unreliable (e.g. Pierce & Ferrier, 2000). However, excluding these species does 473 

not undermine the conclusion that the distributions of most common species are better 474 

accounted for by models based on spatial variables than that of not-so-common species. In 475 

fact, we effectively modelled 47 out of the 86 taxa available at the species (most cases) or 476 

species-group (few cases) taxonomic resolution, comprising 55% of cases, which is a 477 

representative subset of species in the entire metacommunity. 478 

 479 

Approaching the suitability of metacommunity analysis frameworks 480 

With the information above about single-species distribution models and subsequent 481 

comparative analysis across species, it is possible to proceed with the evaluation of the 482 

suitability of the two different frameworks of metacommunity analysis (Figure 1) considered 483 

here: (1) the classical approach exemplified by the four different non-exclusive perspectives 484 



described by Leibold et al. (2004) or (2) the three exclusive components as proposed by 485 

Logue et al. (2011). 486 

Among the four different metacommunity perspectives of the Leibold et al. (2004) 487 

framework, neutral theory and patch dynamics do not rely on the effect of environmental 488 

variables, in contrast to species sorting and source-sink dynamics, the latter of which also 489 

incorporating a strong influence of spatial effects (Figure 1a). In our study, single-species 490 

models often relied on the effect of environmental variables, particularly temperature and 491 

shading, while being also dependent on large-scale spatial variables (Figure 3). As 492 

environmental and spatial factors are both relevant for the distribution of species, this result 493 

suggests that either species sorting along spatially structured environmental gradients, or 494 

source-sink dynamics between populations of high-quality and low-quality habitats, are both 495 

likely as important processes driving metacommunities. Then, the comparative analysis 496 

across species showed that site occupancy is responsible for the observed differences in the 497 

relevance of spatial variables on species distributions (Table 1). This suggests that common 498 

species would be better able than rare species to maintain populations in low-quality habitats 499 

through constant immigration, favouring the source-sink dynamics perspective over species 500 

sorting.  501 

Although species-sorting processes cannot be completely discarded because of the 502 

demonstrated influence of environmental variables in many cases, deviance partitioning 503 

suggests that the pure effects of environmental and spatial factors on species distributions are 504 

stronger than their joint effects (Table S3). Also, the effect of spatial variables was better 505 

explained than that of environmental factors by our explanatory variables, particularly site 506 

occupancy, in the comparative analysis. These results slightly undermine the idea of species-507 

sorting across spatially structured environmental gradients as the most important process 508 

shaping metacommunities. In any case, the neutral theory, which relies entirely on spatial 509 



dynamics, is unlikely. As the dispersal potential of species has a rather weak effect on model 510 

accuracy, patch dynamics can be discarded as well as a suitable perspective of 511 

metacommunity analysis in our case. It should be acknowledged, however, that the difficulty 512 

to explain model performance with dispersal ability can also be a consequence of the 513 

coarseness of the dispersal measures currently available for freshwater invertebrates 514 

(Schmidt-Kloiber & Hering, 2015; Serra et al., 2016; Tachet et al., 2010). Moreover, the 515 

different metacommunity paradigms from Leibold et al. (2004) may always act 516 

simultaneously to a certain extent along a continuum (Figure 1a) rather than being distinct 517 

and mutually exclusive options (Brown, Sokol, et al., 2017; Gravel, Canham, Beaudet, & 518 

Messier, 2006; Logue et al., 2011).  519 

Spatial autocorrelation may appear not only as a consequence of mass effects or 520 

species sorting along spatially structured environmental gradients when the spatial scale is 521 

not very large, but also as a consequence of dispersal limitation at very large spatial scales 522 

(Heino et al., 2015). Nevertheless, some insect species found in this study exemplify well the 523 

potential importance of the source-sink dynamics for metacommunities in subarctic streams, 524 

independently of their dispersal capability. For example, six blackfly species were examined 525 

(Table S1), of which five were present in more than 50% of sites, three of them in 75% of 526 

sites or more (Table S2). Thus, blackfly species in subarctic streams have successfully spread 527 

widely, which is advantageous to maintain metapopulations through source-sink dynamics. 528 

On the other hand, the mayflies are as widespread as the blackflies (Fig. S4), but far less 529 

capable of active dispersal. This suggests that the dispersal capability of species does not 530 

determine the metapopulation dynamics, whereas site occupancy probably does so. Spatial 531 

autocorrelation patterns have been described for the blackflies at small spatial scales, driven 532 

by strong effects of inter-specific competition for oviposition sites, and subsequent priority 533 

effects at the community level (McCreadie & Adler, 2012). The importance of priority effects 534 



for the blackflies reinforces the idea of the relevance of site occupancy for community 535 

dynamics, where rare species are in clear disadvantage for habitat recolonisation. 536 

Alternative to the framework of Leibold et al. (2004), we can interpret our results 537 

under the framework of Logue et al. (2011), whereby three different and mutually exclusive 538 

components can be used to analyse metacommunities: species equivalence, habitat 539 

heterogeneity and dispersal (Figure 1b). In our case, this alternative framework makes 540 

interpretation of the results much easier. At the very least, we can conclude that species 541 

equivalence is unlikely to play any role in metacommunity dynamics, similarly to discarding 542 

neutral theory under the Leibold et al. (2004) framework. Dispersal can also be discarded, yet 543 

again with caution due to the current lack of high resolution dispersal measures for freshwater 544 

invertebrates (Schmidt-Kloiber & Hering, 2015; Serra et al., 2016; Tachet et al., 2010). Thus, 545 

the main difference in the interpretation of the results with this alternative framework is that 546 

we can now be certain about the role of habitat heterogeneity, while under the Leibold et al. 547 

(2004) framework it is more difficult to discern whether species sorting or source-sink 548 

dynamics is the dominant process. Habitat heterogeneity is indeed related to both 549 

mechanisms. In fact, using habitat heterogeneity in space and time as the templet for 550 

ecological strategies (Southwood, 1977) could be the framework of choice in situations 551 

where it is difficult to discern species sorting processes from source-sink dynamics. 552 

 553 

Alternative approaches, caveats and conclusions 554 

Emergent properties at the community level are difficult to discern from field observational 555 

data alone. In this regard, population genetics can be very useful in order to gain confidence 556 

about the distinction between, e.g., source-sink dynamics and species sorting processes. This 557 

is because population genetic studies could be used to estimate the relative contribution of 558 

immigrants from nearby populations to the genetic variability of the population under study 559 



(Bunn & Hughes, 1997; Hughes, Huey, & Schmidt, 2013; Hughes, Schmidt, & Finn, 2009). 560 

Genetic analyses would probably provide the opportunity for a more robust interpretation of 561 

our results. Genetic studies, however, are difficult to accomplish with stream insects in the 562 

field when the idea is to compare many species at a time, and they are far more expensive 563 

than the comparative approach of single species distributions we considered here. Therefore, 564 

the comparative approach presented here can be used as a first step to explore the relative 565 

contribution of environmental and spatial factors on species distributions, without using 566 

expensive and time-consuming genetic analyses. In fact, by using the comparative approach 567 

we can certainly conclude that the dispersal capability of species and neutral theory play little 568 

role in shaping subarctic stream insect metacommunities. Rather, it is habitat heterogeneity, 569 

which influences mass effects and/or species sorting processes, that matters. Subsequently, 570 

the results of our study strongly recommend the preservation of habitat heterogeneity as the 571 

conservation strategy to maintain biodiversity in these ecosystems.  572 

Nevertheless, it should be acknowledged that one shortcoming of single-species 573 

distribution modelling is that it does not consider the influence of species interactions in 574 

structuring ecological communities. Stream ecology has considered that severe environmental 575 

conditions may weaken the potential effects of biotic interactions in structuring communities 576 

(Peckarsky, 1983). However, more recent findings pose doubts as to whether this is actually 577 

true (Cadotte & Tucker, 2017; Thomson et al., 2002). In fact, biotic interactions can 578 

reproduce patterns of community structure essentially identical to what it could be expected 579 

from environmental filtering alone. This is because environmental changes may affect 580 

population growth rates of competing species in opposite ways, and this may cause the 581 

exclusion of some species that would otherwise be able to coexist (Cadotte & Tucker, 2017). 582 

There exists also evidence indicating that biotic interactions limit the geographical range 583 

expansion of species facing environmental changes (Pigot & Tobias, 2013; Sexton et al., 584 



2009). Overall, this suggests that inter-specific interactions may also play a role in our case, 585 

although the abundances of insect larvae in subarctic streams are typically low (see also 586 

Heino & Grönroos, 2017) and may thus result in weak density-dependent interactions among 587 

species (see also Morin, 2011). 588 

Our study considered tributary streams draining into two linear sub-elements of a 589 

larger river network (Fig. S1). However, there exists growing concern about the potential role 590 

of the entire dendritic river networks in shaping biodiversity patterns, community structure 591 

and species distributions (Altermatt, 2013; Altermatt & Fronhofer, 2017; Brown, Wahl, & 592 

Swan, 2017; Jamoneau, Passy, Soininen, Lebuocher, & Tison-Rosebery, 2017; Schmera et 593 

al., 2017). For example, the consideration of whole river networks may unveil a more 594 

preeminent role for spatial factors in community assembly, undermining the role of 595 

environmental filtering. Therefore, studies conducted across whole dendritic networks could 596 

be more in line with neutral theory, as shown by Muneepeerakul et al. (2008) for fish 597 

communities, yet no environmental variable was truly considered in that study. Although we 598 

focused on tributary streams draining into the main river, the consideration of whole dendritic 599 

networks may help us to perceive more accurately the real connectivity pathways between 600 

isolated patches. This connectivity may have consequences for metacommunity stability with 601 

respect to a situation where only a linear component of this network is acting (Fagan, 2002). 602 

Also, dispersal along dendritic networks implies more variability in local richness with strong 603 

consequences also for community differentiation among patches (Carrara, Altermatt, 604 

Rodriguez-Iturbe, & Rinaldo, 2012; Seymour, Fronhofer, & Altermatt, 2015). In any case, 605 

dispersal processes in stream networks may depend on the organism group considered 606 

(Schmera et al. 2017). 607 

In the case of stream insects, the taxa considered and the taxonomic resolution 608 

achieved prior to species-distribution modelling, may also have important consequences on 609 



our perception of the influence of dendritic riverine networks on biodiversity patterns (Kaelin 610 

& Altermatt, 2016). Here, some taxa were discarded as it was not possible to determine the 611 

species. Provided that the influences of dendritic landscapes and biotic interactions (discussed 612 

above) may strongly affect how we understand the reality of community assemblages, it is 613 

essential to use the best taxonomic resolution possible to make accurate inferences about the 614 

mechanisms truly governing the observed patterns. In fact, the criterion of ‘best taxonomic 615 

resolution possible’ used in our modelling endeavours is a fundamental requirement to draw 616 

robust conclusions to be applied in biodiversity conservation.  617 

Finally, for biodiversity conservation, it is essential to focus on maintaining habitat 618 

heterogeneity because it appears to determine metacommunity organization (Kärnä et al. 619 

2015) and species distributions (Heino & de Mendoza, 2016) in streams at high latitudes. 620 

Unless habitat heterogeneity is not considered (along with potentially important effects of 621 

dendritic network structure and biotic interactions), conservation plans may fall short and not 622 

result in desired outcomes. . 623 
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Table 1. Results of beta regression showing the effects of site occupancy, biological trait 876 

vectors and taxonomic vectors on different fractions of variation (adjusted deviance, Adj. D2) 877 

explained by binomial GLMs: local environment (E) effects, climate (C) effects, spatial (S) 878 

effects, and combined (E+C+S) effects. Significant values (p < .05) are shown in boldface; 879 

marginally significant values (p < .10) in italics. 880 

Adj. D2 of E effects       

 Estimate SE z p Log-

likelihood 
Pseudo R2 

(Intercept) -1.6002 0.2220 -7.209 <0.001 49.06 0.2500 

Site occupancy -0.0042 0.0091 -0.469 0.646   

TAX-PCO1 -378.2072 323.7056 -1.168 0.243   

TAX-PCO2 91.4160 161.7362 0.565 0.572   

TAX-PCO3 225.8850 218.0393 1.036 0.300   

TAX-PCO4 -112.1618 101.9824 -1.100 0.271   

TRA-PCO1 -0.5557 0.8628 -0.644 0.520   

TRA-PCO2 1.3525 1.0712 1.263 0.207   

TRA-PCO3 0.3959 0.9475 0.418 0.676   

TRA-PCO4 -1.3110 1.3459 -0.974 0.330   

       

Adj. D2 of C effects       

 Estimate SE z p Log-

likelihood 
Pseudo R2 

(Intercept) -2.9806 0.2682 -11.115 <0.001 94.66 0.2309 

Site occupancy 0.0029 0.0103 0.278 0.781   

TAX-PCO1 -579.9412 375.5543 -1.544 0.123   

TAX-PCO2 83.1028 185.9703 0.447 0.655   

TAX-PCO3 352.6843 252.8857 1.395 0.163   

TAX-PCO4 -1.9501 120.4650 -0.016 0.987   

TRA-PCO1 -1.6362 1.0045 -1.629 0.103   

TRA-PCO2 0.4327 1.2476 0.347 0.729   

TRA-PCO3 0.6454 1.1129 0.580 0.562   

TRA-PCO4 -2.1768 1.5519 -1.403 0.161   

       

Adj. D2 of S effects       

 Estimate SE z p Log-

likelihood 
Pseudo R2 

(Intercept) -2.4436 0.2222 -10.997 <0.001 60.19 0.2137 

Site occupancy 0.0208 0.0083 2.498 0.012   

TAX-PCO1 309.6453 360.2543 0.860 0.390   

TAX-PCO2 -4.0452 162.3764 -0.025 0.980   

TAX-PCO3 365.5554 205.9633 1.775 0.076   

TAX-PCO4 217.5296 102.0912 2.131 0.033   

TRA-PCO1 -1.0051 0.8333 -1.206 0.228   



TRA-PCO2 2.5228 1.1999 2.102 0.036   

TRA-PCO3 1.4151 0.9765 1.449 0.147   

TRA-PCO4 -0.7984 1.3342 -0.598 0.550   

       

Adj. D2 of E+C+S effects       

 Estimate SE z p Log-

likelihood 
Pseudo R2 

(Intercept) -0.7133 0.2331 -3.060 0.002 17.76 0.1791 

Site occupancy 0.0111 0.0095 1.164 0.244   

TAX-PCO1 -140.2227 352.1883 -0.398 0.691   

TAX-PCO2 32.5012 178.6572 0.182 0.856   

TAX-PCO3 407.2860 228.4095 1.783 0.075   

TAX-PCO4 81.0016 110.2921 0.734 0.463   

TRA-PCO1 -1.3052 0.9142 -1.428 0.153   

TRA-PCO2 1.6446 1.1935 1.378 0.168   

TRA-PCO3 0.9742 1.0367 0.940 0.347   

TRA-PCO4 -1.0409 1.4575 -0.714 0.475   

881 



Figure legends 882 

Figure 1 Conceptual representation of (a) the four non-exclusive classical approaches in 883 

metacommunity studies (Leibold et al. 2004), and (b) the more recent framework of 884 

metacommunity analysis based on three exclusive components (Logue et al. 2011); according 885 

to the relative relevance of the variables used in this study (axes): spatial variables (x-axis), 886 

environmental variables (y-axis) and the different dispersal capability of species (z-axis). 887 

Circles represent the theoretical location where the emphasis of each approach is situated 888 

across the three axes. 889 

Figure 2 Flow chart of the statistical analyses performed in this study. 890 

Figure 3 Frequency of local environmental variables (top) and spatial variables (bottom) 891 

selected as significant in explaining species distributions through binomial GLMs. Spatial 892 

variables are arranged from small-scale (i.e. V13) to large-scale extent (i.e. V1), and include 893 

V11 which was never selected. Climate variables are not shown (mean annual temperature 894 

was selected 32 times, and July air temperature 20 times). Species-environment relationships 895 

are shown in black when positive and grey when negative. Specific information for each 896 

species can be found in Table S2. 897 

Figure 4 Species scores on taxonomic vectors TAX-PCO3 (a) and TAX-PCO4 (b), and on 898 

trait vector TRA-PCO2 (c), arranged from lowest to highest values. For the trait vector, the 899 

location of the different functional feeding (FFG) and habit trait groups (HTG), is indicated, 900 

as well as the four different body size classes considered (BS, represented by columns of four 901 

different sizes), and those insects considered as of high female dispersal potential (H). 902 
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