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Predictive biomarkers for tumor response to neoadjuvant
chemotherapy are needed in breast cancer. This study investigates
the predictive value of 280 genes encoding proteins that
regulate microtubule assembly and function. By analyzing
three independent multicenter randomized cohorts of breast
cancer patients, we identified 17 genes that are differentially
regulated in tumors achieving pathological complete response
(pCR) to neoadjuvant chemotherapy. We focused on MTUS1gene,
whose major product ATIP3 is a microtubule-associated protein
down-regulated in aggressive breast tumors. We show here
that low levels of ATIP3 are associated with increased pCR rate,
pointing to ATIP3 as a new predictive biomarker of breast tumor
chemosensitivity. Using preclinical models of patient-derived
xenografts and 3D models of breast cancer cell lines, we show
that low ATIP3 levels sensitize tumors to the effects of taxanes
but not DNA-damaging agents. ATIP3 silencing improves the pro-
apoptotic effects of paclitaxel and induces mitotic abnormalities,
including centrosome amplification and multipolar spindle
formation, which results in chromosome missegregation leading
to aneuploidy. As shown by time-lapse videomicroscopy, ATIP3
depletion exacerbates cytokinesis failure and mitotic death
induced by low doses of paclitaxel. Our results favor a mechanism
by which the combination of ATIP3 deficiency and paclitaxel
treatment induces excessive aneuploidy, which in turn results
in elevated cell death. Together, these studies highlight ATIP3
as a new important regulator of mitotic integrity and a useful
predictive biomarker for a population of chemoresistant breast
cancer patients.

MTUS1 | predictive biomarker | texanes | multipolar spindle | aneu-
ploidy

Introduction
Breast cancer is a leading cause of cancer death among women
worldwide. Neo-adjuvant chemotherapy, administered before
surgery, represents an option for a number of breast cancer pa-
tients (1). Pre-operative chemotherapy decreases primary tumor
burden, thus facilitating breast conservation (2, 3), and admin-
istration of chemotherapy on naïve tumors prior to surgery also
provides the opportunity to rapidly measure tumor response and
identify breast cancer patients that may gain advantage from the
treatment. The achievement of pathological complete response
(pCR), characterized by complete eradication of all invasive
cancer cells from the breast and axillary lymph nodes, is often
considered as a surrogate endpoint for cancer-free survival after
neoadjuvant setting, especially in aggressive triple-negative breast
tumors (4,5). Clinical parameters, such as estrogen receptor-
negative status, high histological grade and high proliferative sta-
tus have been associated with greater sensitivity to chemotherapy
(5,6). However, the proportion of patients who achieve a pCR fol-

lowing preoperative chemotherapy remains low, reaching 15-20%
in the whole population and 30-40% in ER-negative tumors (7,8).
Considering the rapidly growing area of personalized medicine,
the identification of efficient molecular markers that can predict
sensitivity to chemotherapy is crucial to select the patients who
may benefit from therapy, thereby avoiding unnecessary treat-
ment and associated toxicities for those who remain resistant (9).

The most used regimens in the neoadjuvant setting of breast
cancer patients include taxanes and anthracyclines, which com-
bination is associated with improved outcome compared to an-
thracyclines alone (3). Taxanes (paclitaxel and docetaxel) are
microtubule-targeting agents that bind and stabilize microtubules
(MT), inducing mitotic arrest and apoptosis (10, 11). At clinically
relevant concentrations of the nanomolar range, these drugs
suppress MT dynamic instability (11-13) and behave as mitotic
poisons that target the mitotic spindle during mitosis, inducing
multipolar spindles and centrosomal abnormalities (13). The
assembly and dynamics of the mitotic spindle are tightly regu-
lated by a number of MT-associated proteins (MAP) and mitotic
kinases (14, 15), suggesting that alterations of MAP expression
and/or function in breast tumors may regulate their sensitivity
to taxane-based chemotherapy. Gene expression studies indeed
identified the MAP tau protein as a predictive biomarker whose
down-regulation is associated with increased pCR rate in breast
cancer patients (16-21), underlining the interest of studying MT-
regulating proteins as new predictors of chemotherapy efficacy.

Significance

Low levels of ATIP3 in breast tumors are associated with
increased response to neoadjuvant chemotherapy and ATIP3
silencing in breast cancer cells potentiates the effects of pacli-
taxel, highlighting the importance of this predictive biomarker
to select breast cancer patients who are sensitive to taxane-
based chemotherapy. ATIP3 depletion promotes mitotic ab-
normalities including centrosome amplification and multipolar
spindle formation, which is a source of chromosome segre-
gation errors and aneuploidy. Excessive aneuploidy in ATIP3-
deficient cells treated with low doses of paclitaxel results in
massive cell death.
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Fig. 1. A-Venn diagram of the number of differentially expressed genes be-
tween sensitive (pathological complete response, pCR) and resistant tumors
(Non pathological response, NpR) in each of the three cohorts; REMAGUS02
(R02), REMAGUS04 (R04) and M.D. Anderson (MDA), and common genes
among them. B- Volcano plots showing differentially expressed genes be-
tween sensitive (pCR) and resistant tumors (NpR)from patients of the R02
(left), MDA (middle) and R04 (right) cohorts. Each dot represents the fold
change and the p-value obtained for a single gene probeset. Genes common
to all three cohorts are plotted in blue. MAPT is plotted in light blue and
MTUS1is in red. Names of the best candidates are indicated. C- Scattered
dot plot of MTUS1 probeset (212093 s at) intensity in tumors from patients
of the R02 cohort with no pathological response (NpR) or achieving patho-
logical complete response (pCR) after neoadjuvant chemotherapy. Numbers
of samples are indicated under brackets.**p<0.01 D- ROC curve evaluating
the performance of MTUS1 expression for predicting complete response to
neoadjuvant chemotherapy. AUC Area Under the Curve. E- Heat-map and
hierarchical clustering of 115 breast tumor samples based on the intensities
of four MTUS1probesets (212096 s at; 212093 s at; 212095 s at 239576 at).
Heat-map illustrates relative expression profiles of MTUS1 (column) for each
tumor sample (line) in continuous color scale from low (green) to high (red)
expression. Dendogram of the 3 selected tumor groups is shown on the
right. F- Scattered dot plot of MTUS1 expression in each of the 3 selected
clusters based on the dendogram shown in (E). Numbers of samples are
under brackets. G- Proportion of patients with pCR according to MTUS1 level
in each selected cluster. Numbers of tumors in each group are indicated
under brackets. H- Proportion of patients with pCR according to MTUS1
level in all tumors (All) and among ER+ and ER- tumors. Numbers of tumors
in each group are indicated under brackets. I-Correlation between MTUS1
(212093 s at) probeset intensities and ATIP3 mRNA levels measured by real-
time RT-PCR (qPCR) using oligonucleotides designed in 5’ exons that are
specific to ATIP3 transcripts, in 106 breast tumor samples of the R02 cohort.

In the present study, we analyzed a panel of 280 genes en-
coding MT-regulating proteins to evaluate their predictive value
as biomarkers of neoadjuvant taxane-based chemotherapy in
breast cancer patients. Seventeen genes were identified as being

Table 1. MT-regulating genes differentially expressed in
chemosensitive breast tumors

Gene
Symbol

Gene Name Process

ASPM Abnormal spindle
microtubule assembly

MT minus-end binding,
spindle organization

AURKB Aurora kinase B Ser/Thr protein kinase,
spindle organization

GTSE1 G2 and S phase-expressed 1 MT plus-end binding,
spindle organization, cell
migration

KIF11 Kinesin family member 11 MT molecular motor
activity, spindle
organization

KIF14 Kinesin family member 14 MT molecular motor
activity

KIF15 Kinesin family member 15 MT molecular motor
activity

KIF18B Kinesin family member 18B MT depolymerizing
activity, spindle
organization

KIF20A Kinesin family member 20A MT molecular motor
activity

KIF2C Kinesin family member 2C MT depolymerizing
activity, spindle
organization

KIF4A Kinesin family member 4A MT molecular motor
activity, chromokinesin

KIFC1 Kinesin family member C1 MT molecular motor
activity, spindle assembly

RACGAP1 Rac GTPase-activating
protein 1

MT plus-end binding,
spindle midzone assembly,
cytokinesis

STMN1 Stathmin 1 MT-destabilizing protein,
spindle organization

TPX2 Targeting protein for Xklp2 Aurora kinase A-regulator,
spindle organization

MAPT Microtubule-associated
protein tau

MT-stabilizing protein,
EB1-binding

MAST4 Microtubule associated
serine/threonine kinase
family member 4

Ser/Thr protein kinase

MTUS1 Microtubule-associated
tumor suppressor 1

MT-stabilizing protein,
EB1-binding,
tumor-suppressor effects

Properties of the 17 differentially regulated MT-regulating genes
common to the REMAGUS02 (R02, left), M.D. Anderson (MDA, middle), and
REMAGUS04 (R04, right) studies. Genes up-regulated in sensitive (pCR)
tumors are in yellow, those down regulated are in blue.
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Table 2. Predictive factors of pathological complete response (pCR) in the R02 study

Univariate Multivariate

Variable pCR (%) OR (95%CI) pvalue OR (95%CI) pvalue
Age
<50 8 (10.3) 0.44 (0.145-1.33) 0.147
>50 7 (20.6)
ER
negative 10 (25) 4.46 (1.4-14.2) 0.011 4.66 (1.46-14.81) 0.0076
positive 5 (6.9)
PR
negative 13 (21.3) 6.5 (1.39-30.36) 0.017 1.88 (0.40-8.78) 0.281
positive 2 (4)
HER2
negative 9 (12.2)
postive 6 (15.8) 1.35 (0.11-4.13) 0.597
Grade
III 10 (16.1) 2.01 (0.59-6.89) 0.262
I/II 4 (8.7)
Tumor stage
T2 10 (17.8) 2.21 (0.70-6.96) 0.172
T3-4 5 (8.9)
Nodal Status
N0 8 (19.1) 2.05 (0.684-6.14) 0.199
N+ 7 (10.3)
MTUS1 level
low 8 (32) 5.37 (1.71-16.84) 0.0039 12.16 (3.88-38.07) <0.0001
med (n=7) high
(n=0)

7 (8.1)

continuous * 1,78 (1.19-2.76) 0,005

* Entered as continuous variable (probeset 212096 s at values)
Univariate and multivariate analysis are shown on the left and right, respectively.

differentially expressed in tumors from patients achieving pCR
from three independent multicenter randomized breast cancer
clinical trials. We focused our interest on candidate tumor sup-
pressor gene MTUS1 (22, 23) that encodes the MT-stabilizing
protein ATIP3, previously reported as a prognostic biomarker
of breast cancer patient survival (24, 25). We show here that
low ATIP3 expression in breast tumors is associated with higher
pCR rate. Unexpectedly, ATIP3 deficiency, which is known to
increase MT instability (25), improves rather than impairs cancer
cell sensitivity to taxanes. Our results favor a model in which
ATIP3 depletion sensitizes cancer cells to paclitaxel by increasing
centrosome amplification and mitotic abnormalities, leading to
massive aneuploidy and cell death.

Results

Gene expression studies identify MTUS1 gene as a predictor of
breast tumor response to neoadjuvant chemotherapy

To identify new predictive biomarkers of sensitivity to neo-
adjuvant chemotherapy in breast cancer, we analyzed a panel
of 280 genes encoding MT-regulatory proteins including MAPs
and mitotic kinases. We compared gene expression profiles with
clinical data in three independent cohorts (R02, MDA and R04)
of 115, 133 and 142 breast cancer patients, respectively (dataset
Table S1). We identified a total of 118 genes that were signifi-
cantly differentially regulated (p<0.01) in patients who achieved
pCR compared to those (NpR) who did not. Among them, 17
were common to all three cohorts (Fig.1A, 1B, Table 1, dataset
Table S2). These genes encode structural MAPs that regulate
MT stability (MAPT, MTUS1, STMN1), MT end-binding proteins
(ASPM, GTSE1, RACGAP1), protein kinases and their regulators
(AURKB, MAST4, TPX2) and molecular motors (a total of 8
kinesins) that control mitosis, cytokinesis or intracellular trans-

port. Of note, the MT-stabilizing protein tau encoded by MAPT
was previously described as a potent predictor of taxane-based
chemotherapy in breast cancer (16-21), therefore validating our
gene profiling approach.

Besides MAPT, the MTUS1 gene consistently reached higher
fold change and better p value in all three cohorts (Fig. 1B).
We thus focused our attention on MTUS1, whose gene product
ATIP3 has been identified as a prognostic biomarker of patient
survival with potent tumor suppressor effects in breast cancer (24,
25). In each cohort of breast cancer patients examined, MTUS1
Affymetrix probesets intensities were significantly lower in cases
with pCR than in those with NpR (Fig.1C, datasets Fig S1-S3).
Receiver Operating Curves (ROC) revealed an Area under the
curve (AUC) values of 0.717 (p=0.007), 0.699 (p=0.0005) and
0.769 (p<0.0001) in theR02,MDAandR04 cohorts, respectively,
indicating that MTUS1 levels predict the response to chemother-
apy with good accuracy (Fig 1D, datasets Fig S1-S3).

Tumorswere then classified into three groups expressing high,
medium and lowMTUS1 levels according to heatmap hierarchical
clustering (Fig 1E, 1F). In the R02 cohort, the pCR rate was 32%
(8/25) in tumors expressing low MTUS1 levels compared to 11.9%
(7/59) and 0% (0/31) in those expressing medium and high levels
of MTUS1, respectively (Fig 1G), indicating that the subpopula-
tion of low MTUS1-expressing tumors is more prone to achieve
complete response. Of note, 100% of tumors with high MTUS1
levels failed to achieve pCR, suggesting that high MTUS1 levels
may identify patients unlikely to respond to chemotherapeutic
treatment (Fig 1G). Similar results were obtained using the two
other cohorts of patients (datasets Fig S2D, S3D).

Univariate logistic regression analysis including age, hormone
receptors, HER2, tumor grade, stage, nodal status and MTUS1
level identified hormonal receptors ER (OR 4.46; CI[1.4-14.2])
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Fig. 2. A- Left:Immunohistochemistry performed on human breast cancer
xenograft sections of a Tissue Microrarray (TMA) using anti-MTUS1 mono-
clonal antibody. Shown are representative photographs of tumors expressing
low (left) or high (right) levels of ATIP3. A bar represents 500μm. Insets
are shown in the bottom with a bar representing 50μm. Right:Correlation
between ATIP3 mRNA expression level (by qPCR) and Immunohistochemistry
score (IHC score). B- Scattered dot plot of ATIP3 (qPCR) mRNA expression
level in HBCx treated with Docetaxel (DTX) (left panel) or with Anthracyclin-
Cyclophosphamide (AC) (right panel). Tumors are classified according to
their response to drug treatment. R indicates resistance and S indicates
sensitivity to the treatment. Numbers of samples are under brackets. *p<0.05
C- Percentage of responsive HBCx according to ATIP3 level. Tumors were
subdivided into groups expressing high-ATIP3 versus low-ATIP3 levels based
on the median value of ATIP3 measured by real-time RT-PCR. *p<0.05
D- Dose response curves of SUM52PE spheroids expressing (shCtrl) or not
(shATIP3) ATIP3 and treated with increasing concentrations of Paclitaxel
(PTX). E- SUM52PE spheroids expressing (shCtrl) or not (shATIP3) ATIP3 were
treated for 6 days with 50nM Paclitaxel (PTX) or 100nM Doxorubicin (DOXO)
and photographed. Picture represents one spheroid of the quadruplicate.
Spheroid area were measured and results are plotted in the histogram on the
right. ****p<0.0001 F- Representative photographs of SUM52PE spheroids
expressing endogenous ATIP3 (shCtrl) or silenced by shRNA (shATIP3) treated
with 50nM of PTX for 72hrs prior to staining with TUNEL reagent (green)
and DAPI (blue). Quantification of apoptosis, measured as percent of TUNEL-
positive cells, is shown on the right. Obj x20, scale bar 100μm. **p<0.01 G-
Western Blot analysis of PARP cleavage in SUM52PE spheroid expressing (shC-
trl) or not (shATIP3) ATIP3 treated for 72hrs with increasing concentrations
of PTX. Vinculin (Vinc) is used as internal loading control. Quantification is
shown below.

and PR (OR 6.5; CI[1.39-30.36]), as well as MTUS1 (OR 5.37;
CI[1.71-16,84]) as predictive factors associated with pCR after
neoadjuvant chemotherapy (Table 2, dataset Table S3). In mul-
tivariate analysis, ER (OR 4.66; CI[1.46-14.81]) and MTUS1 (OR

Fig. 3. A. Immunofluorescence photographs of HeLa cells transfected with
siCtrl or siATIP3 and treated or not with 5nM of PTX prior to staining with
antibodies directed against α−tubulin (red) and pericentrin (green). Nuclei
are stained with DAPI (blue). Quantification of abnormal mitoses is shown
on the right. B. Proportion of mitotic HeLa cells with abnormal number of
spindle poles upon 48 hrs ATIP3 silencing and 18hrs PTX treatment (2nM).
C. Percent of mitotic HeLa cells containing acentrosomal poles. Cells were
treated as in B. D. Percent of mitotic HeLa cells containing more than two
centrosomes. Cells were treated as in B. E. Scattered dot plot of the number
of centrosomes per mitotic HeLa cells treated as in B. F. Cell fate profiles
of control (left) and ATIP3-silenced (right) HeLa cells in absence (top) or
in presence of 2nM PTX (bottom). G. Scattered dot plot of mitotic length
measured from chromosome condensation to initiation of cytokinesis in HeLa
cells silenced or not for ATIP3 and treated or not with 2nM PTX. H. Proportion
of cell fate profiles measured in F. I. Images from time lapse experiment
performed in F, showing representative cell fates. Microtubules are stained
in green, DNA in red. Time, hours:minutes, is indicated in upper left of the
picture. A-H.Number of mitotic cells is under brackets. *p<0.05, ***p<0.001

12.16; CI[3.88-38.07]) were identified as independent predictors
of pCR (Table 2, dataset Table S3). These results indicate that
low MTUS1 status may be used to identify patients with high
response rates. Notably, 32% of low-MTUS1 tumors were as-
sociated with pCR, compared to 25% for ER-negative tumors.
Combining ER status and lowMTUS1 levels further increased the
pCR rate from 7% to 25% among ER-positive tumors, and 25%
to 39% among ER-negative tumors of the R02 cohort (Fig 1H).
Similar results were obtained with the two other series of patients
(datasets Fig. S2E, S3E). Real time RT-PCR analysis performed
in a panel of 106 breast tumors of the R02 cohort using 3 different
pairs of oligonucleotides showed significant correlation between
ATIP3 mRNA levels and MTUS1 Affymetrix probeset intensities
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Fig. 4. A. FACS analysis of DNA content of HeLa cells transfected with
scramble or ATIP3-directed siRNA prior treatment with 5nM PTX for 18h.
Shown is the proportion of cells in each cell cycle fraction. B. Proportion of
HCT116 metaphase spreads containing abnormal numbers of chromosomes.
Inset shows a representative image of metaphase spread and corresponding
number of chromosomes is indicated in the upper left corner of the image.
C. Percentage of aneuploid cells among HCT116 cells silenced (siATIP3) or
not (siCtrl) for ATIP3 and treated or not with 5nM PTX for 18hrs. Number
of metaphase spreads analyzed in 3 independent experiments is shown
under brackets. *p<0.05, **p<0.01D. Proportion of tumors from the Curie
cohort showing altered ploidy according to ATIP3 level. Number of tumors
analyzed is indicated under brackets.E. Heatmap and hierarchical clustering
of 115 breast tumor samples of the R02 study based on the intensities of
the 25 genes from chromosomal Instability CIN signature (29). Proportion
of tumors expressing high level (high-CIN) or low levels (low-CIN) of CIN
signature according to ATIP3 levels is shown on the right. Number of tumors
is indicated under brackets

(Fig 1I, datasets Fig S1D-S1F). Together, these results indicate
that low ATIP3 mRNA levels predict breast tumor response to
chemotherapy.

Low ATIP3 expression in breast tumors and cancer cells
increases sensitivity to taxanes but not DNA-targeting agents

Pre-clinical studies were undertaken using patient-derived
xenografts (26) to confirm and extend our results obtained on
breast cancer patients. Twenty-two models of human breast can-
cer xenografts grown in mice (HBCx) were exposed to either Do-
cetaxel (DTX) or Anthracycline plus Cyclophosphamide (AC).
ATIP3 expression levels in HBCx were evaluated by real time RT-
PCR and validated by IHC (Fig 2A, dataset Table S4). ATIP3
mRNA levels were then plotted according to sensitivity (S) or
resistance (R) of tumors to DTX and AC treatment. As shown

in Fig 2B, DTX-sensitive xenografts displayed significantly lower
ATIP3 levels than DTX-resistant ones (median expression value
0.14 versus 0.33). No significant difference in ATIP3 level was
observed between AC-sensitive and AC-resistant HBCx (Fig 2B),
indicating that ATIP3 levels are associated with the response
to the microtubule-targeting agent DTX rather than to DNA-
targeting drugs. Accordingly, the response rate toDTXwas signif-
icantly higher in low-ATIP3 compared to high-ATIP3 expressing
HBXs (70% vs 16.7%) whereas the response rate to AC remained
similar in both groups of tumors (80% vs 75%) (Fig 2C).

We then investigated the consequence of ATIP3 depletion
on breast cancer cell viability upon exposure to chemotherapy.
Breast cancer cells were grown in 3-dimensions as multicellular
spheroids to mimic the main features and tissue architecture
of solid tumors (27) and were treated with increasing doses of
chemotherapeutic agents. ATIP3 silencing in SUM52-PE cells
(dataset Fig S4A)markedly improved the cytotoxic effects of both
docetaxel (DTX) and paclitaxel (PTX) (Fig 2D, datasets Fig S4B-
S4D) but had no effect on the cellular response to doxorubicin
(Fig 2E). Similar results were obtained in HCC1143 and MDA-
MB-231 breast cancer cells treated with DTX and PTX, respec-
tively (datasets Fig S4E, S4F), confirming that ATIP3-deficiency
sensitizes breast cancer cells to taxanes but not to DNA-targeting
drugs.

Taxanes are mitotic poisons that arrest cells in mitosis and
trigger apoptosis. Multicellular spheroids treated with clinically
relevant doses of PTX (13) were arrested in mitosis, a pheno-
type that was further increased in ATIP3-deficient cells (dataset
Fig.S5A). ATIP3-deficiency also increased the percentage of cells
undergoing apoptosis following treatment with low doses of PTX
(Fig 2F, dataset Fig S5B). Accordingly, molecular markers of
apoptosis, such as cleavage of PARP (Fig 2G) and of caspase-3
(dataset Fig S5C) as well as decline in anti-apoptotic proteinMcl-
1 levels (dataset Fig S5D), were elevated upon PTX treatment in
ATIP3-deficient compared to ATIP3-proficient spheroids. Thus,
ATIP3 deficiency improves the mitotic and pro-apoptotic effects
of taxanes.

PTX-induced mitotic defects are increased in ATIP3-
deficient cells

To get insight into the mechanism by which ATIP3 depletion
sensitizes cancer cells to the effects of PTX, we examined the con-
sequences of ATIP3 silencing on mitosis. HeLa cells were used
as a reference model in these experiments because they express
endogenous ATIP3 and are more suitable than SUM52 cells for
cell imaging. As shown in Fig.3A, ATIP3 depletion induced the
formation of multipolar spindles (18%) and raised from 55% to
almost 100% the percentage of multipolar cells in the presence
of low doses of PTX. ATIP3 depletion also markedly increased
the number of spindle poles formed upon PTX treatment, with
a significant fraction of spindles showing more than 5 poles
(Fig 3B), some of them being acentrosomal (Fig 3C), indicating
excessive mitotic abnormalities. The increased number of spindle
poles was mainly due to centrosome amplification which was
markedly increased when combining ATIP3-silencing and PTX
treatment (Fig 3D). Accordingly, ATIP3 silencing was associated
with supernumerary centrosomes and the number of centrosomes
permitotic cell was further elevated inATIP3-deficient cells upon
PTX treatment (Fig 3E, dataset Fig S6A). More than half of
supernumerary centrosomes contained either one or no centriole
(dataset Fig S6B), underlining major centrosomal defects. To-
gether these results indicate that ATIP3 silencing induces centro-
some amplification leading to multipolar spindles, a phenotype
that is amplified upon PTX treatment.

We then examined the consequences of ATIP3 silencing and
PTX treatment on cell fate at the single cell level using time-lapse
videomicroscopy (Fig 3F, datasets movies 1-4). ATIP3-silencing
increased the time in mitosis (Fig 3G) and induced the formation
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of multipolar cells that were able to divide, giving rise to 2 or 3
viable daughter cells containing several nuclei (Fig 3H, 3I, dataset
movie 2). PTX at low dose induced a majority (79%) of cells with
multipolar spindles, among which 14% were unable to divide.
These cells either died inmitosis or underwent cytokinesis failure,
giving rise to groups of multinucleated cells that ultimately died
during the following division (Fig 3H, 3I, dataset movie 3). ATIP3-
silencing combined with low dose of PTX induced massive (95%)
formation of multipolar cells, 41% of which died during the first
division from cytokinesis failure or mitotic death (Fig 3H, 3I,
dataset movie 4). Thus, ATIP3 silencing exacerbates mitotic ab-
normalities and subsequent cell death induced by PTX treatment.

ATIP3 depletion is associated with increased aneuploidy
The formation of multipolar spindles is a source of chro-

mosome missegregation and aneuploidy, suggesting that ATIP3
silencing may promote aneuploidy. To test this hypothesis, we
analyzed cellular DNA content by flow cytometry to assess DNA
ploidy in HeLa cells treated or not with low doses of PTX. In
line with previous studies (11, 13), treatment with PTX at the
nanomolar range resulted in a hypodiploid (<2N) population of
cells (Fig 4A, dataset Fig S7A). This population of aneuploid cells
disappeared at higher concentrations of PTX (100 nM)when cells
were arrested in G2/M (dataset Fig S7B) and was negative for
Annexin-V labelling (dataset Fig S7C), excluding the possibility
that these cells may be apoptotic. In ATIP3 depleted cells, hy-
podiploidy could not be detected by flow cytometry procedures
in the absence of treatment (Fig 4A). However, following PTX
exposure, the population of hypodiploid cells was raised from 12
% in control cells to 25% in ATIP3-deficient cells, indicating that
ATIP3-silencing increases PTX-induced aneuploidy.

Aneuploidy was also evaluated by counting chromosome
number per cell, in metaphase chromosome spreads of HCT116
cells, used as a reference cellular model in these studies because
they are nearly diploid and chromosomally stable. PTX treatment
significantly increased the incidence of both hypodiploid (<40
chromosomes) and hyperdiploid (>50 chromosomes) cells and
ATIP3 silencing further increased aneuploidy (Fig 4B, 4C).

To assess the clinical relevance of our findings, we analyzed
a series of 88 breast cancer patients in which ploidy had been
evaluated. Tumors were grouped according to low- and high-
MTUS1 level using heatmap classification as reported (24, 28)
and compared with ploidy status (dataset Table S5). As shown
in Fig 4D, 65% of low-MTUS1 tumors were found to be ane-
uploid compared to 42% of high-MTUS1 tumors. Since ane-
uploidy often results from chromosomal instability (CIN), we
investigated whether MTUS1 levels may also be associated with
CIN. A "CIN25 signature", comprising a panel of 25 differentially
regulated genes has previously been reported in breast cancer
(29). We therefore classified breast tumors as high-CIN or low-
CIN based on the "CIN25 signature" and compared the signature
with MTUS1 levels. As shown in Fig 4E and dataset Fig S8,
40% of breast tumors with high-MTUS1 levels were classified
as high-CIN compared to 60% of low-MTUS1 tumors. Together,
these results comfort the notion that breast tumors expressing low
levels of ATIP3 are more prone to chromosomal instability and
aneuploidy.

Discussion

Based on transcriptional profiling of three independent cohorts
of breast cancer patients treated with taxane-based neoadjuvant
chemotherapy, we show here for the first time that microtubule-
associated protein ATIP3 is an independent predictive biomarker
of the response to treatment. Low levels of ATIP3 were signifi-
cantly more frequent in breast tumors that achieved pCR com-
pared with those that did not respond to treatment, suggesting
that low ATIP3 expression may be used as a marker to iden-
tify breast cancers that are highly sensitive to taxane-containing

chemotherapy. Importantly, in all three cohorts analyzed, 98% to
100% of tumors expressing high levels of ATIP3 failed to achieve
pCR, indicating that ATIP3 may also be a useful biomarker to
select patients unlikely to respond to conventional chemotherapy,
which is of clinical importance to limit toxicity and side effects of
ineffective treatments. Low ATIP3 levels predict the response to
neoadjuvant chemotherapy even better than ER-negative status
and can further identify responders among ER-negative tumors.
This finding is of particular interest for triple-negative breast
tumors (TNBC) for which chemotherapy remains the unique
therapeutic option (30). Further validation in adjuvant trials is
warranted to firmly establish the value of ATIP3 as a predictive
biomarker in clinical practice in breast cancer. It will be inter-
esting to broaden our study to other types of malignancies, such
as prostate, lung or ovarian cancer, where taxanes are frequently
used.

Pre-clinical studies performed on breast cancer patients-
derived xenografts and in 3D-models of multicellular spheroids
further allowed us to investigate the predictive value of ATIP3 in
the response to taxanes compared to anthracyclines and showed
that low levels of ATIP3 are associated with high sensitivity to
docetaxel, with no impact on the response to DNA-targeting
agents. Accordingly, ATIP3-silencing sensitizes cancer cells to low
doses of paclitaxel and potentiates the well-known effects of the
drug on mitotic arrest and apoptosis. Although consistent with
data from breast cancer patients, this was an unexpected result
given that ATIP3 silencing increases MT dynamics (25), which is
opposite to the MT-stabilizing effects of taxanes.

Results presented here indicate that silencing of the MT-
stabilizing protein ATIP3 induces multiple mitotic abnormalities
that mimic those induced by PTX. We propose a mechanism in
which ATIP3 silencing, by causing centrosome amplification and
multipolar spindle formation, amplifies the effects of taxanes and
thereby exacerbates mitotic abnormalities, chromosome segrega-
tion errors, CIN features and aneuploidy, ultimately leading to
cell death in response to treatment.

It has been widely shown that centrosome amplification,
leading to spindle multipolarity and subsequent chromosome
missegregation and aneuploidy, promotes tumor initiation and
progression (31-33). Centrosome amplification is also associated
with worse clinical outcome in breast cancer (34, 35). In this
context, our findings that ATIP3 deficiency induces centrosome
amplification are consistent with previous observations that low
ATIP3 levels in breast tumors are associated with poor patient
prognosis (25). Strikingly, our data also indicate that combining
ATIP3 deficiency and PTX treatment causes excessive centro-
some amplification and aneuploidy, which in turn triggersmassive
cell death inmitosis. This is in line with previous observations that
increasing chromosome missegregation and aneuploidy beyond a
critical threshold leads to cancer cell death and tumor suppression
(36, 37), and supports our clinical results showing higher pCR for
ATIP3-deficient breast cancer patients treated with taxane-based
chemotherapy.

In conclusion, while the consequences of centrosome ampli-
fication and CIN for therapeutic responses in cancer patients still
remain a matter of debate (38), our data emphasize for the first
time the link between centrosome amplification and increased
pCR rates for breast tumors. Our results highlight ATIP3 as a
novel predictive biomarker to select a population of breast cancer
patients who are likely to benefit from taxane-based chemother-
apy and open the way to new therapeutic strategies based on
increasing centrosomal alterations to achieve chemosensitivity.

Materials and Methods
Studies using cohorts of patients and patient-derived xenografts were re-
viewed by ethical commitees and approved by institutional review boards.
All patients signed an informed consent for voluntary participation in the
trial. Details on patients and samples, clinical data and gene profiling are
provided in Supporting Materials and Methods. These also describe RNA

681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748

6 www.pnas.org --- --- Footline Author

749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816



Submission PDF

extraction and real-time RT-PCR analysis; cells used; multicellular spheroids
(MCS); TUNEL assay and FACS analysis of apoptosis; DNA content analysis
and chromosome spread; confocal imaging and time-lapse videomicroscopy;
analysis of mitotic defects; and immunohistochemistry. Statistical analyses
were done using JMP-7 and GraphPad Prism6 softwares. The association
between clinicopathological characteristics and pathological response after
neoadjuvant chemotherapy were calculated using the chi-squared and the
Fisher exact tests. The association between pathological response and multi-
ple biomarkers was evaluated by a logistic regression model using categorical
and continuous variables. Dot plot analyses were done using Mann–Whitney
test. Data in bar graphs (mean +/− SD) were analyzed using 2-tail unpaired
Student t test. P < 0.05 was considered statistically significant.
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