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Abstract: 

 

The paper focuses on cluster policies with particular attention to the role of R&D collaborative 

incentives in the structuring of knowledge networks in clusters. We disentangle the main network 

failures in regional innovation systems, and discuss the selection procedures designed by policy 

makers to foster knowledge collaborations. We draw evidence from the French Aerospace Valley 

cluster from 2006 to 2015. The case study is based on a dataset of 248 granted research consortia, 

from which we build 4-cohort knowledge networks that enable us evidencing the evolving 

structural properties of the cluster over time. We suggest avoiding the bias and limitations of 1 and 

2-mode network analysis by developing an original place-based network methodology that 

emphasizes on structural equivalence and groups’ behaviors. We discuss the results focusing on 

the convergence degree between the structural properties of the cluster selected by the Program 

and the policy makers’ objectives. Finally, the methodology allows us to identify the agents of the 

structural and technological changes observed throughout the period. 
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1. Introduction 

 

The development of cluster policies relies on the growing awareness from academics and policy makers 

that network failures have to be merged with traditional market ones in the design of public innovation 

incentives (Woolthuis et al., 2005; Vicente, 2017). That is why cluster policies have been implemented 

in many countries since the end of the 1990s (Uyarra and Ramlogan, 2012; Maffioli et al., 2016). They 

coexist nowadays with innovation policies based on individual incentives, such as research tax credit 

and innovation grants sponsored by public agencies (Nishimura and Okamuro, 2011). Cluster policies 

aim at designing R&D collaborative incentives to strengthen knowledge networks in order to stimulate 

the expected benefits of local knowledge spillovers (Broekel et al., 2015). Cluster policies basics 

broadly rely on two related network failures. First, the potentialities of knowledge spillovers from 

science to industry can be inefficiently exploited due to the cultural divide and the weak absorptive 

capabilities between the two communities. Considering that positive impacts of knowledge spillovers 

are geographically bounded (Audretsch and Feldman, 1996), cluster policy guidelines will tend to favor 

local incentives towards networks mixing public research organizations and companies. Second, 

entrepreneurship matters in clusters (Rocha and Sternberg, 2005; Delgado et al., 2010). Their 

effectiveness can be assessed by the rate of SMEs and spinoffs’ birth and entry. The latter is the mark of 

the level of technological variety and renewal, and therefore represents a significant indicator of the 

cluster long-run dynamics. Here again, these births and entries are geographically bounded, and 

contained in the close perimeter of universities and big companies (Audretsch and Lehman, 2005). But 

the entry dynamics is not a significant condition of cluster success per se. New entrants sometimes need 

to benefit from collaborative opportunities, especially in industries in which modularity and 

interoperability matter (Suire and Vicente, 2014). Then, collaborative incentives between SMEs and big 

companies are also a regular means used in cluster policies to foster regional performance.  

 

The aim of this research is to have a deeper insight of these policy guidelines, and to find and test 

adapted network methodologies to deal with (i) the links between the public micro-incentives for 

knowledge collaboration and the structural properties of the network that emerge from these incentives, 

and (ii) the identification of the agents at the origin of structural changes. In that respect, the place-based 

network methodology and the nested cohesive block analysis are developed and offer promising 

avenues. As a matter of fact, it is common in the literature to assess whether network position increases 

individual innovative performance (Zaheer and Bell, 2005; Cattani and Ferriani, 2008). Nevertheless, 
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very few contributions have studied the impact of cluster development programs not on the links 

between the actors’ position and performance but on the links between the structural properties of 

networks these incentives produce and the patterns of knowledge dynamics at work within the cluster 

(Crespo et al., 2014; Giuliani and Pietrobelli, 2016). This question requires going beyond the different 

centrality degrees developed in the literature to measure individual position in networks. It requires 

investigating different concepts related to complex structural properties imported from network theories 

in order to better disentangle the consequences of different properties of network connectivity on the 

cluster development patterns. Moreover, it also requires overcoming methodological issues that arise 

when one deals with aggregate relational data at the regional scale. To improve our knowledge on that 

emerging research topic, we will focus on a single case study: the Aerospace Valley in Toulouse – 

France from 2006 to 2015, i.e. from the start of the policy to the year from which data are available. 

Aerospace Valley is one of the leading public-funded clusters granted by the French Cluster Program, 

and it is also the name of the association nurturing R&D collaborations and managing the international 

visibility of the cluster. As a consequence, Aerospace Valley can be considered as a particular cluster 

and knowledge network whose nodes are organizations involved in R&D projects selected by the 

association, and ties are collaborations having received public incentives. Our goal is not to find 

causality between the policy and the innovative performance of the organizations affiliated to the cluster 

program. To do so, systematic analysis on several places should be carried out, and counterfactual 

analysis required (Giuliani and Pietrobelli, 2016). Our goal is different and just as important for 

whoever wants to have a better understanding of how policy makers shape the organization of 

innovation processes in regions. Indeed, our basic starting assumption is related to the fact that, in spite 

of their control on the selection of R&D collaborations at the micro and dyadic levels, policy makers 

cannot have a perfect real-time knowledge and control of the structure as a whole. In network theories, 

this type of micro-macro scales problems is typical (Watts, 2004; Newman et al., 2006): the “macro-

behavior” of the network and its structural properties, both resulting from the aggregation of ties, can 

escape their own intention. Since clusters are foremost networks (Giuliani and Bell, 2005; Vicente et al., 

2011), dealing with the links between micro incentives and macro structures can be an alternate means 

to discuss how innovation policies can shape collaborative patterns and the structure of knowledge 

networks, as previously documented in the context of European Framework Programs assessment 

(Breschi and Cusmano, 2004; Vonortas, 2013).  

 

The contribution is divided as follows: Section 2 goes back to the structuring of R&D networks in 

clusters and the design of public collaborative incentives aiming at repairing network failures. Section 3 

aims at exemplifying these incentives and their consequences in the evolving structure of a particular 
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cluster. We start by explaining the historical and technological context in which the Aerospace Valley 

cluster has been selected by national authorities to be eligible to public-funded incentives for R&D 

collaborations, before describing the cluster policy guideline developed in order to sustain its 

development. Section 4 presents the data collection procedure which enables us to build an original and 

complete dataset of public-funded collaborative R&D projects for this cluster. Then we discuss the 

methodological issues for building networks over the period. We disentangle the problems that 

generally arise for the study of networks resulting from the simple aggregation of collaborative and 

multilateral R&D consortia. To circumvent them, we suggest a place-based network methodology that 

focuses on structurally-equivalent relational behaviors. Section 5 shows how this methodology helps us 

identifying the evolving structural properties of knowledge networks in the cluster over time. Section 6 

discusses the results under a particular focus related to the convergence degree between the network 

statistical findings and the objectives stated by the policy makers, with a particular focus on the agents 

of the structural and technological changes over the period. 

 

 

2. Network failures, behavioral additionality, and the design of collaborative incentives in 

cluster policies 

 

Cluster policies support the idea that an additional source of R&D productivity at the meso level 

remains hidden behind the simple aggregation of the innovative capabilities of each organization 

considered in isolation. Therefore, the expected economic return is directly related to the multiplier 

effect induced by network incentives and collaborative subsidies. This multiplier effect is directly 

associated to the particular type of additionality – named behavioral additionality – generally expected 

by governments when they implement collaborative incentives in R&D activities (Fier et al., 2006; 

Clarysse et al., 2009). While input and output additionalities are usually expected from individual 

incentives to innovate when market failures are considered, behavioral additionality is put forward as 

the main argument of policy implementation when systemic failures are observed in regional or larger 

innovation systems (Luukkonen, 2000; Breschi et al., 2009; Gök and Edler, 2012). Network failures 

constitute a large part of these systemic failures (Woolthuis et al., 2005) and concern the structural 

organization of innovation process (Vicente, 2017). Taking them into account can explain why cluster 

policies based on collaborative R&D grants have gradually substituted individual grants, and why the 

need for network-oriented methodologies to evaluate collaborative programs is getting more and more 

challenging (Vonortas, 2013; Giuliani and Pietrobelli, 2016). Fixing network failures implies a large 

spectrum of policy interventions and raises the typical question of selection. Indeed, selection is the key 
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principle as well as the key difficulty, due to the information asymmetries between collaborative grants 

providers and receivers. That is why cluster policy makers usually design filtering processes in order to 

reduce these asymmetries. Moreover, by influencing collaborative behaviors of local agents, policy 

makers also influence the collaborative structure as a whole. Each selected collaboration contributes to 

the network structuring and connectivity. Here again, a new asymmetry occurs, since policy makers can 

have difficulties to perceive the aggregate network structure that evolves over time as new agents and 

new collaborations enter the network. Subsidizing a set of “good collaborations” does not necessarily 

imply shaping “good networks”. Therefore, understanding cluster policies as a means to boost 

innovative outputs through behavioral additionality requires working both on the selection process of 

knowledge collaborations at the micro level (2.1) and on the connectivity properties of the network as a 

whole (2.2). 

 

2.1 Filtering and selecting knowledge collaborations in clusters 

 

For cluster public fund raisers, repairing network failures first consists in identifying the nature of these 

failures, in order to develop an oriented selection mechanism for the provision of collaborative grants. 

Not all collaborations are equally relevant to sustain. Policy makers have to grant a minimum of 

collaborations for a maximal-expected economic return, by ranking strategic priorities for their 

collaborative incentive schemes. 

 

- Public knowledge dissemination and absorption 

 

One of the typical network failures relies on an insufficient level of reciprocal absorptive capabilities of 

knowledge between public research organizations and firms. In spite of the “public good” property of 

knowledge outputs produced by universities, the regional benefit from local knowledge spillovers does 

not only result from geographical proximity, but from the intentional effort of agents to interact in 

multiple ways in order to improve their mutual understanding in problem solving (Breschi and Lissoni, 

2001; Bishop et al., 2011). A cultural gap and a weak social mobility and proximity between the two 

communities are often mentioned as a source of inefficiency (Hemmert et al., 2014). Therefore, 

providing incentives for knowledge exchanges between academic and private R&D labs remains one of 

the main filtering mechanisms in cluster programs. Nevertheless, this type of support is not necessarily 

useful for clusters that have historically succeeded in overlapping academic and business networks. But 

because academic research plays a crucial role in network during the early stage of technological 

domains (Owen-Smith and Powell, 2004), this means to foster academic knowledge dissemination is 
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more relevant for clusters for which technological renewal matters. The economic return of cluster 

policy as well as the behavioral additionality gained from collaborative incentives is expected to be 

higher in this type of context in which academic research and business communities remain poorly 

connected (Morrison and Rabellotti, 2007). At the reverse, for clusters involved in the upstream phases 

of market development, the need for this type of public-funded collaborations is less crucial, and can be 

a source of crowding-out when implemented in an excessive myopic way. 

 

- SMEs entry and connectivity 

 

Like organic systems, cluster long-run performances depend on the renewing degree of firms’ 

demography. While some clusters succeed in engendering spinoffs and start-ups, others fail and tend to 

concentrate knowledge relationships between big and long-established companies (Rocha and 

Sternberg, 2005). Beyond the question of new entries, the issue for cluster policy makers is also related 

to the growth and survival rates of nascent companies. Delgado et al. (2010) and Wennberg & Lindqvist 

(2010) show that clustering effects have a higher impact on new companies birth and survival than pure 

agglomeration externalities. In industrial domains in which systemic technologies require integration 

between separated pieces of knowledge disseminated between different companies, connections to the 

main companies holding the central part of the system are often for the new entrants the opportunity to 

cross the bridge between R&D and business prospects (Suire and Vicente, 2014). Therefore, repairing 

network failures in clusters consists in building selection mechanisms that are conditional to the 

attendance of young or nascent SMEs in consortia. Designing this type of incentives can decrease the 

homophilic relational behaviors between core-companies that relegate new entrants in the network 

periphery. In terms of expected economic returns, providing this type of collaborative incentives could 

be more effective than pure individual incentives that put SMEs in a situation of public fund 

dependence, without any sufficient guarantees that they alone might succeed in finding market 

opportunities. But at the reverse, this filtering mechanism can be a source of crowding-out for clusters in 

which social networks between new entrepreneurs and managers of long-established firms work well. 

 

- Local cohesiveness and global accessibility 

 

Clusters are not closed systems. Their success depends both on their internal structuring and their 

degree of embeddedness in global networks. Since the large fieldwork analysis of Storper & Harrison 

(1991) and Markusen (1996), it is acknowledged that clusters strongly differ in their balance between 

inward and outward knowledge relationships. Each organization manages its relational portfolio 
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according to its own perception of the benefits from voluntary knowledge exchanges and the risk of 

unintended knowledge spillovers. Geographical proximity increases these opportunities, but also 

increases these risks (Breschi and Lissoni, 2001; Boschma, 2005). When collaborations on knowledge 

open new opportunities but are likely to generate distrust and appropriation concerns (Gulati and Singh, 

1998), building relationships with distant partners limits the risks of unintended spillovers. Moreover, 

global relationships enlarge the variety of external knowledge sources (Morrison et al., 2013), and are 

particularly strategic between distant competitors wishing to collaborate on how to turn separated and 

competing technologies into interoperable ones (Balland et al., 2013). Therefore, the balance between 

local and global collaborative incentives constitutes a challenging point for cluster policy makers.  

 

- Technological relatedness, diversification and new growth paths  

 

Cluster dynamics are not never-ending stories of specialization, nor random processes of jumping from 

one industry to another. The technologies and markets on which clusters evolve over time move along a 

gradient of related and unrelated diversification. In the Silicon Valley, the photovoltaic industry in the 

2000s has at first glance nothing to do with the computer industry in the 1980s. It is nevertheless 

noteworthy that they share knowledge on storage technologies for data and energy on one side, and 

nanostructures on the other side, coming both from the semiconductors industry which has continuously 

developed since the 1970s. Several factors explain these regional diversification processes (Boschma, 

2017), from skills mobility (Neffke and Henning, 2013) to institutional agency (Borras and Edler, 

2014). Among them, the dynamics of inter and intra-industry collaborations plays a critical role 

(Broekel and Brachert, 2015), and then appears as an additional source of network failures. In regions in 

which several clusters are identified as such by policy makers, the bridging between them constitutes a 

source of path creation potentialities. The debates on the superiority of related or unrelated 

diversification on cluster performances are far from being over and empirical evidences are too 

contextual to enable the design of standard policy lessons. However, diagnosis of the network structures 

of clusters can help policy makers better orientate their collaborative incentives on particular directions. 

As suggested by Suire and Vicente (2014), providing public incentives towards collaborations in 

closely-related industries should be more effective for clusters that failed to set up their technologies on 

mass markets, while collaborative incentives toward previously-unrelated industries and skills can favor 

path renewal for clusters entering a phase of transition.   

 

These network failures, presented separately for convenience, are not necessarily independent of each 

other. For example, when there is a lack of diversification within a region, this may be the consequence 
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of a lack of global connectivity of the cluster, since the diversification opportunities result from 

collaborations with partners outside the region (Fitjar and Rodríguez-Pose, 2011; Morrison et al., 2013). 

Likewise, the connectivity of SMEs to networks is not independent from the overlapping of academic 

and business networks, in particular when this concerns university spinoffs and their need to connect the 

business community (Mustar, 1997; Sternberg, 2014). Relying on one of these network failures is not 

without consequences on the others, and these interdependencies must be taken into account by cluster 

policy makers. 

 

2.2 Connectivity and the structural properties of networks in clusters 

 

When cluster policy makers provide incentives for collaborations, they contribute to the circulation of 

knowledge like a visible hand trying to take the control of the expected positive effects of unintended 

knowledge spillovers. But having the perfect control of the evolving structural properties of networks is 

somewhat difficult, even impossible, since all the new supported collaborations but also the renewing 

and ending ones continuously modify the properties of the structure. If failures at the dyadic level can be 

easily fixed, repairing structural failures is not within policy maker’s reach. They are difficult to fix, but 

some of them have been identified as key properties that matter for the long run performance of social 

networks (Watts, 2004; Rivera et al., 2010; Ahuja et al., 2012) but also clusters and regions (Crespo et 

al., 2014; Breschi and Lenzi, 2016).  

 

- Connectivity vs. density 

 

The balance between network connectivity and density is an important feature of networks, and one of 

the critical parameter of their aggregate performance. Network connectivity has been considered as an 

important feature of knowledge network since it enhances information flows and knowledge spillovers 

(Fleming et al., 2007). A high level of relational density does not necessarily imply a high level of 

connectivity. It depends on how collaborative incentives are distributed among the organizations in 

clusters (Crespo and Vicente, 2016). For a given amount of relationships, knowledge can always find a 

path to flow between any pairs of organizations, or, at the reverse, can meet several breaking points. In 

extreme cases, when incentives are oriented toward the reinforcement of closure into separated cliques 

of organizations, increasing density cannot increase connectivity. Closure and cohesiveness in networks 

are important for enhancing trust and coordination, in particular when systemic innovations require 

complex processes of knowledge integration. But cluster policy makers also need to pay attention to the 

overall connectivity in order to favor knowledge circulation and maintain new collaboration 
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opportunities. Although cluster policy guidelines generally stress on the necessity to increase the overall 

density of networks in clusters (Vicente, 2017), cluster managers who are actually involved in cluster 

development also have to focus more surgically on particular bridging links between cohesive groups. 

 

- Hierarchy 

 

Knowledge networks in clusters are neither pure centralized structures of interaction nor pure “flat” 

ones (Markusen, 1996). In between, clusters are typified by networks in which organizations differ in 

terms of degree centrality. The extent of the relational portfolio of each organization depends on their 

size and their willingness to collaborate. On the one side, monitoring large portfolio of collaborations is 

not within every firm’s reach, since time and human resources are required for that purpose. On the 

other side, whatever their size, the need for firms to access external knowledge is also a critical indicator 

of their willingness to collaborate. Consequently, the cluster will differ according to the level of 

hierarchy in the structure of knowledge interactions. A strong hierarchy, represented by a very sloping 

degree distribution, is generally the sign of mature clusters in which big and long-established 

organizations have developed a large portfolio of knowledge collaborations (Brenner and Schlump, 

2011). On the other hand, a weak hierarchy, represented by a very flat degree distribution, is the sign of 

a burgeoning and nascent cluster which has not yet succeeded in reaching a high level of coordination in 

knowledge exchanges. For markets in which competition and industrial organization are based on 

systemic and modular products, the existence of core-organizations able to manage the convergence and 

interoperability between separated pieces of knowledge is one of the key conditions for clusters to reach 

a leading position on markets (Balland et al., 2013). When clusters display hierarchy, they often exhibit 

a core-periphery structure (Borgatti and Everett, 1999) in which highly-connected organizations 

designing technological standards co-exist with loosely-connected ones, generally new entrants such as 

spinoffs and SMEs. This topological form of networks conveys a structure in which the growing 

capabilities of central organizations to manage the systemic process of innovation do not play against 

but co-exist with new entries. This structure of knowledge interactions in clusters has been documented 

by Owen-Smith and Powell (2004) for the biotech industry in Boston, and by Cattani and Ferriani 

(2008) for the movie industry in Hollywood. Other network-based analysis of clusters document this 

type of structure in developing countries, whether in mature technology-intensive industries (Giuliani et 

al., 2018), or in agro-industry like wine or cheese industry (Giuliani and Bell, 2005; Giuliani, 2013; 

Crespo et al., 2014). Therefore, cluster policy practitioners have to pay attention on the existing 

structure of knowledge interactions. They can help some of the burgeoning organizations become core-

ones in nascent clusters or, at the reverse, provide incentives for entrepreneurship in mature clusters. 
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- Assortativity 

 

Beyond the shape of the degree distribution, the shape of the degree correlation also matters. Called 

assortativity in network theories (Rivera et al., 2010; Ahuja et al., 2012), the degree correlation offers a 

formal view on how highly and poorly-connected organizations interact together. A network is strongly 

assortative when highly-(poorly-) connected organizations tend to form relationships with other highly-

(poorly-) connected organizations, and disassortative when core-organizations tend to interact more with 

peripheral ones. Therefore, assortativity is an indicator of the knowledge pathways between big 

organizations and less central ones, such as spinoffs and SMEs. As evidenced by Crespo et al. (2016), a 

too strong assortativity in mature clusters weakens their endogenous capabilities on renewing 

themselves over time. The main challenge for successful and mature clusters is to avoid entering into 

decline when the markets on which they are well-installed also decline. Network assortativity, after a 

while, becomes a source of conformism and negative lock-in (Watts, 2004), due to an excessive 

redundancy of knowledge flows within the core-component of the network (Vonortas, 2013). As a 

corollary, fresh and explorative knowledge produced by peripheral organizations has difficulties to 

reach and irrigate the core of the network (Fleming et al., 2007). Accordingly, disassortative structures 

of knowledge interactions enable clusters to have a higher propensity to continually overlap emergent 

and mature markets, by multiplying pathways between the burgeoning ideas developed by new entrants 

and the market experience acquired by core-organizations. Therefore, policy makers have to consider 

this network property carefully. For that purpose, they need to pay attention to the phase of the business 

cycle on which clusters are situated.  

 

The concept of network failures is not only a pure and uncontextualized theoretical argument to justify 

public incentives for knowledge collaborations in clusters. It also requires an approach taking into 

account the territorial context and the historical contingencies on which these incentives are 

implemented. The actual network failures can be weak or strong, and depend on a wide range of critical 

parameters policy makers have to capture in order to better contextualize their intervention. In 

particular, as intriguingly shown by Fleming et al. (2007), salient structural properties developed in the 

literature, like small-world properties, can win and lose in significance according to the territorial and 

technological contexts in which these properties are studied. In the same vein, Crespo et al. (2016) 

showed that hierarchy and assortativity play differently in the performance of clusters when the maturity 

and renewal stages are introduced as key controls in the search from the significant properties of cluster 

performance.  
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3. The context of Aerospace Valley in Toulouse 

 

3.1.  Cluster context: mature markets and the need for regional diversification and relatedness 

 

Greater Toulouse (France) is a leading and historical place for aeronautics and space industries in 

Europe (Niosi and Zeghu, 2005; Zuliani, 2008; Gilly et al., 2011). The main oligopolistic companies of 

these two related industries and some of their plants are located in Toulouse (Airbus, Airbus Defense 

and Space, ATR, Thales Alenia Space, Safran, among others), and the city hosts the main French high 

schools of engineering and research in this technological domain (Sup’Aero, ONERA, Federal 

University of Toulouse, among others) as well as the headquarter of the National Center for Spatial 

Studies (CNES). This cluster displays three main characteristics: (i) its maturity, since it leads the 

European aeronautics and space industries, (ii), its centrality, since it is at the center of the whole of 

European industrial and innovation networks in the technological field; (iii) its developing 

diversification, since it faces challenges related to environmental constraints and new balances between 

military and civilian market opportunities. The aerospace industry displays specific properties in terms 

of industrial organization. It traditionally combines a strong hierarchy between the different firms 

involved in the supply chain with a systemic production process organized around a hub and spoke 

network architecture. As pointed by Wink (2010), the industry was until the end of 1980s typified by 

close links with the military industry implying strong confidentiality requirements and a high share of 

internal R&D. Diversification was low and the high capital intensity was at the origin of strong entry 

barriers, together with the government regulation. After this period, the industry met new challenges 

leading to salient structural changes. On the one side, the aircraft industry started to blur its own sectoral 

frontiers by looking for partners outside its engineering-based value chain. The main incumbents built 

relationships with nature, informatics and material sciences in order to find solutions for the weight 

reduction of airplanes and to improve their eco-efficiency. On the other side, the space industry started 

to develop civilian applications and strongly diversify its partners’ portfolio for that purpose, in 

particular in the transversal domain of embedded systems. These structural changes have given birth to 

new industries, such as GNSS (Global Navigation Satellite Systems), drones, and other related 

industries. 
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3.2.  Cluster policy guideline: a two-stage selection process  

 

Aerospace Valley is a cluster-governance structure born in 2005, as the result of the implementation of 

the still ongoing French Cluster Policy. The cluster has been selected by the French government as one 

of the seven “world-wide clusters” in the French cluster classification (beside eleven “globally-oriented 

clusters”, and fifty three “national clusters”). The aim of the national policy consists in fostering 

innovation by selecting a set of 2-dimension vectors of regions and technological domains that are 

eligible for receiving grants for R&D collaborative projects. Aerospace Valley is one of these leading 

selected vectors, with “greater Toulouse and its administrative NUTS2 region” and “aeronautic, space, 

and embedded systems” as vector coordinates. The governance structure of the cluster is appointed to 

provide networking activities and facilitate the emergence of R&D collaborative projects between the 

industry and the academia. In particular the structure is responsible for organizing the first stage of the 

selection process for the national calls for proposal launched by the FUI (Single Inter-Ministry Fund) 

and the ANR (French Research Agency). This first stage consists in a certification process of the most 

promising R&D research consortia that meet the strategic objectives of the cluster. Once this 

certification dealt with, the second stage of the selection process is organized at the national level. The 

FUI and ANR regularly launch calls for proposal for R&D collaborative projects for which only 

consortia certified at the cluster level can apply. Collaborative incentives for cluster development are 

thus organized at two levels. First, the local certification process is an incentive for firms and public 

research organizations to work together in order to acquire public funds for their research activities. 

Second, the national selection is a strong incentive for cluster managers to nurture synergies and 

collaborations in order to get an increasing number of grants and maintain their position in the French 

cluster classification. 

 

The guideline has not been set in stone since 2005. First, it has changed at the national level over the 

period. Second, cluster managers, in the limits of the French guideline constraints, have a degree of 

latitude to adapt their incentives for R&D collaborations. The main persisting constraint is the necessity 

for R&D collaborative projects to gather private companies and public research organizations. At the 

reverse, other constraints and incentives have evolved over the period. First, the constraint of being 

located in the geographical perimeter of the cluster to attend a project has been relaxed in an early stage. 

Too closely-related to Porter’ ideas of cluster organization, this constraint reduced collaborative 

opportunities and the influence of clusters abroad. Once relaxed, it became possible to apply to the 

national grants with projects certified by more than one cluster governance structure. This change aimed 

at finding a better “cluster policy mix” between inward and outward collaborative incentives, as 
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suggested by Morrison et al. (2013). Second, in order to deal with the Matthew effect according to 

which the selection process naturally allows the rich to get richer, strong incentives to include SMEs in 

R&D consortia have been designed at the national level and absorbed at the cluster level. Lately, strong 

incentives have been added in order to boost not only exploration, but also exploitation and markets, 

putting the concept of “factories of the products of the future” beside the “projects factories” at the heart 

of the new guideline. Finally, with the possibility given by the national constraints to grant inter-cluster 

collaborative projects, many clusters including Aerospace Valley have recently provided strong 

incentives toward industrial diversification, in order to better overlap mature and emerging markets. 

 

4. Data collection and methodology 

 

Characterizing networks in clusters using public-funded R&D collaborative projects requires particular 

caution in terms of data collection, time-window definition, and adapted methodologies of network 

analysis.  

 

4.1. Data collection and disambiguation 

 

Data collected on collaborative projects certified by Aerospace Valley and granted at the national level 

between 2006 and 2015 constitute the material used to analyze the evolving structural properties of the 

cluster. These data are extracted from Aerospace Valley website and the national list of selected 

projects. They concern the FUI and ANR programs, both being the main national programs aiming at 

restoring incentives to collaborate on knowledge. These data include project scientific abstracts, and 

information about the consortium members (location, institutional form, size). If the collection of 

projects does not suffer from limitations, that is not the case for the project members. Indeed, an 

extensive effort of disambiguation was required to work with fine-grained data. This effort focused on 

an appropriate targeting of departments and plants actually involved in projects, in order to avoid the 

over representation of multi-plant companies and large public research organizations. Project websites, 

companies activity reports and scholars affiliation have been consulted in order to refine the database. 

When contradictory information remained, e-mails to academics and engineers were sent and the 

answers enabled us to reach a sufficient fine-grained extraction.   

 

Over the period, 248 projects were granted. We split the period into four sub-periods using start date of 

projects in order to affiliate projects to cohorts with comparable time window and size. Table 1 presents 

basic statistics on collaborative projects over the period. 
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Table 1 here 

 

The nodes have been typified according to 4 categories: Big companies, SMEs (under 100 employees), 

PROs (Public Research Organizations), and others (including technological platforms and agencies, 

public institutions). Their location is also taken into account in a binary way by distinguishing nodes 

located into the administrative area of the cluster and the others. Figure 1 describes the evolving 

demography of nodes according to these specifications.  

 

Figure 1 here 

 

 

4.2. Overpassing bias and capturing groups’ behavior: the place-based network methodology 

 

Analyzing how public collaborative incentives drive network structuring in clusters requires aggregating 

collaborative projects funded in a same time window (same cohort), and reproducing the process for all 

the other time windows. Several previous empirical studies applied this methodology in the context of 

regional cluster analysis (Owen-Smith and Powell, 2004; Giuliani and Bell, 2005; Vicente et al., 2011; 

Levy and Talbot, 2015; Crespo et al., 2016), as well as in the context of larger networks at the European 

level (Breschi and Cusmano, 2004; Breschi et al., 2009; Balland et al. 2013; Kang and Hwang, 2016). 

When collaborative projects are considered, network analysis can start by the construction of a 2-mode 

network, i.e. an affiliation network drawn from a rectangular matrix and composed of one type of node 

(the organizations) connected to another type of node (the projects). In this type of networks, there is no 

link connecting nodes of the same type. But at the reverse, two projects can be linked by one or several 

organizations, and two organizations can be tied by one or several projects. This type of network has 

been suggested by Breschi and Cusmano (2004) and Balland et al. (2013) since it allows having a first 

view of how projects in a same technological field can be linked together by multi-affiliated 

organizations. 2-mode networks can be turned into 1-mode networks, in order to capture the structure of 

innovative activity in clusters. 1-mode networks are drawn from a square matrix and are composed of a 

set of nodes representing organizations and a set of ties representing knowledge flows between them. 

This methodology has proven its reliability to identify critical organizations in knowledge dissemination 

at the micro-level, and salient structural properties at the meso-level. Nevertheless, as pointed by Robins 

and Alexander (2004), this network-based analysis is not exempt of biases and limitations.  

 



15 

 

First, when networks are drawn from the aggregation of R&D consortia, i.e. from the aggregation of 

cliques of fully-interconnected organizations, different biases can occur (Uzzi and Spiro, 2005). Most of 

them are related to the risk of confusion in ego-network properties such as degree centrality and 

brokerage, due to the heterogeneity in the size of cliques (Breschi and Cusmano, 2004). They can give 

rise to misleading interpretation in the actual role of organizations in knowledge dissemination. To give 

an example, let us consider an organization that is affiliated to a 15-member consortium, and only to this 

one. It will have a high degree centrality, while, as shown by Bernela and Levy (2017), its influence and 

involvement in the innovation system can be very weak, in particular if this organization does not 

actually interact with all the other consortium members. Let us now consider another organization 

involved in 3 collaborative projects, each affiliating only 3 partners. Its degree centrality will be less 

significant due to a thinner relationships portfolio, while one can expect a higher involvement in 

projects and a more strategic position in the network. Dealing with this issue is a challenge for network-

based cluster analysis, in particular when the size of consortia strongly differs, as it is typically the case 

in that analysis in which the consortia go from 2 to 32 organizations (see table 1 above). Therefore, 

methodologies are required to correct this bias. The idea is to better apprehend the skeleton of the 

network by capturing the actual influence of nodes. For instance, Breschi and Cusmano (2004), in their 

network analysis built from European collaborative programs, suggest using 1-mode “star” networks 

instead of considering consortia as fully-connected cliques. They consider each consortium as a sub-

network only connecting prime contractor to participants. Vicente et al. (2011) use an alternate method 

based on the diamond of Robins and Alexander (2004). A diamond appears when two organizations 

connected to a project are also connected to another project. Both allow limiting these biases and 

offering the means to study the backbone of networks, without the noise introduced by the 

heterogeneous size of R&D consortia. 

 

Second, as early demonstrated by Pallotti and Lomi (2011), not only nodes position and direct ties 

explain knowledge dissemination in networks. Starting from the ideas on structural equivalence 

developed by Lorrain and White (1971) and Burt (1987), they show that groups’ behaviors also matter. 

Structural equivalent organizations have similar patterns of relations to others, and thus share and face 

same resources and constraints (Stuart and Podolny, 1996; Gnyawali and Madhavan, 2001). They tend 

to contribute to innovation communities in a same way not only because they influence each other by 

direct ties, but because they face similar dependencies and relational contexts (Mizruchi and 

Galaskiewicz, 1993). Identifying groups’ behaviors based on structural equivalence enables having a 

complementary way to deal with the influence organizations have in the aggregate structure of 

knowledge interactions. By giving the skeleton of the network, it also allows to better capture the 
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changes on the structural and relational patterns (Brieger, 1976; Borgatti and Everett, 1992; Doreian, 

2012). 

 

Rather than limiting the study to a simple 1-mode network analysis, we suggest developing an alternate 

methodology that would correct the bias as well as consider groups’ behaviors, without compromising 

the possibility to analyze nodes’ position in networks. To do so, we use the so-called “network of 

places” approach early developed in sociology by Pizarro (2007) and now operational for large dataset-

based empirical analysis with the R-module "Places: Structural Equivalence Analysis for Two-mode 

Networks". To define a place Pi of structural equivalent organizations, let us start by considering a finite 

set of organizations � = ���, ��, ��, … �
�, each affiliated to one or more projects belonging to the set of 

projects, noted C (in order to consider each project as a fully-interconnected clique), with � =


��, ��, ��, … ���. We can define a place Pi of an organization �ϵ� as a subset of C such as at least one of 

the organizations of I belongs to every one and only to the projects included in the subset Pi. Therefore, 

for ���, �� = ��� ∈ �: �� ∈ ���. If two organizations i, j ϵ I have the same subsets of C, they belong to the 

same place. Then, they are structurally equivalent (Borgatti and Everett, 1992). Places become the new 

nodes of the network, that are connected by a relation R when �� ∩ �� ≠ ∅. Therefore, the set P of all the 

places defined in C and the set R of their relations constitute the network of places. This set P can also 

be defined as a set P(k,l), where k represents the number of projects in which organizations are involved 

together, and l the number of organizations belonging to the place. This reduction process based on 

structural equivalence and groups’ behavior gives the skeleton of the organizational 1-mode network, 

without losing the organizations, which remain in the structure, but now as simple places’ constituents. 

In addition, it provides a simple, accurate and fast algorithm for the study of structural equivalence 

(Doreian, 2012). 

 

Figure 2 here 

 

Figure 2 highlights in a stylized way the process that turns a network of projects (cliques of fully-

connected nodes) into a network of places, where nodes are now places gathering structural equivalent 

organizations. Box 1 presents a structure of knowledge interactions composed of 4 collaborative 

projects, each of  them composed (in transparency) of fully-connected cliques of organizations. Box 2 

turns this structure into a simple 1-mode network. Box 3 sorts structural equivalent organizations into 

distinct groups, while box 4 preserves in transparency the previous 1-mode network, and displays now 

the network of places.  
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Table 2 here 

 

We turn the 1-mode network of organizations into a 1-mode network of places in order to better focus 

on the groups’ behaviors of the Aerospace Valley network skeleton. Table 2 presents basic statistics of 

this new network.  

 

Figure 3 provides an actual illustration, limited here at the fourth cohort of the Aerospace Valley cluster, 

in order to have a better view of how this reduction process gives the skeleton of the network and 

neutralizes the bias related to the strong heterogeneity of R&D consortia size. 

 

Figure 3 here 

 

 

5. Identification of the evolving structural properties of Aerospace Valley Cluster 

 

By designing collaborative incentives and selection routines of R&D consortia, cluster policy makers 

expect reaching their objectives related to better public knowledge dissemination, SMEs entries, global 

connectedness and technological diversification. But is the visible hand of the policy maker as dexterous 

as that of the juggler to repair network failures? A detailed analysis can help dealing with this question. 

It consists in discussing the degree-related structural properties of the network of places, in order to 

discuss whether or not the selection routines meet the policy makers’ objectives. 

 

5.1. Degree distribution (hierarchy), degree correlation (assortativity) 

 

Figure 4 here 

 

If we stick to a pure structural level, the evolving properties of hierarchy and assortativity give a first 

overview of how the topological forms of the network of places have changed over the period. Figure 4 

summarizes these evolutions. First, hierarchy, which is measured by the gradient of the degree 

distribution, remains high but has declined over the period with a slight increase from cohort 2 to 3. It 

means that the Aerospace Valley cluster is typified by a high but decreasing level of places 

centralization. Because places represent homogenous groups’ relational behaviors, this high level of 

centralization indicates the coexistence between groups of organizations with different sizes of 
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relational portfolio, from a couple a highly-connected organizations that collaborate with many others to 

poorly-connected organizations. But over the period, the influence and coordination capabilities of 

groups have been more distributed between a larger number of less central places. Second, the network 

of places is typified by a bell curve of degree correlation. It indicates a changing balance in the paths 

between highly and poorly-connected places and the organizations that belong to them. Indeed, highly-

connected organizations in cohort 1 tend to collaborate more with poorly-connected organizations than 

in cohort 2 and cohort 3. This pattern shows that the network tends to be more and more assortative, 

with an increasing tendency of highly connected organizations to interact together. Nevertheless, the 

assortativity decreases in the last period, showing a reverse tendency. The most noteworthy is that 

hierarchy and assortativity play together in a different way from cohort 1 to cohort 2 and from cohort 3 

to cohort 4. In the first period, the decreasing hierarchy goes with an increasing assortativity, signifying 

that a more distributed influence in the network has engendered more paths between places that have 

close degree. But this is not the case in the last period, in which the influence has been more and more 

distributed in the network, but this time with an increasing tendency of highly and poorly-connected 

places to interact together. 

 

5.2. Connectedness and p-cohesive blocks modeling 

 

This result invites to go more in depth into these structural properties in order to have a better 

understanding of the drivers of these changes. The idea is to highlight, in the line of Moody and White 

(2003) methodological proposal, how places connect together in a nested system of cohesive blocks and 

form a multiconnected network (Powell et al., 2005). A close method relying on the k-core notion has 

also been implemented by Breschi and Cusmano (2004) to extract in the very large European network of 

public-funded R&D consortia the areas of the network where interaction among actors is particularly 

intense. In our case, for each cohort, we extract the number of p-cohesive blocks. A cohesive block is a 

component defined as a subset of the network where the associated value of connectivity p gives the 

strength of cohesion of the block. The value p is then the maximal number of places in the subset, above 

which the block cohesion disappears. Strongest cohesive blocks are cliques, i.e. those in which every 

place is directly connected to every other place. Therefore, we can characterize the network by a 

hierarchical nesting of cohesive blocks. The process consists in finding by iteration a maximal number q 

of p-cohesive blocks, with q > p. Once these blocks identified, their rank-size distribution offers a 

relevant means to assess the “multilevel embeddedness” (nestedness in the terminology of Moody and 

White) of places in the overall network. This rank-size distribution offers a relevant means to both 

identify cohesive blocks and order them according to both nested and fragmented groups. Indeed, 
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cohesive blocks can overlap when places belong to multiple groups. The more cohesive blocks overlap, 

the more they bring closer in the distribution. Therefore, the shape of the distribution offers a relevant 

way to observe how high and low-value cohesive blocks connect together, and then how hierarchy and 

assortativity play together in the overall structure of knowledge flows.  

 

Figure 5 here 

 

Figure 5 describes the construction of the p-cohesive blocks and the iteration process offering the nested 

and hierarchical system of p-cohesive blocks for the cohort 1. For instance, the block B-1 is a 0-

cohesive block representing the entire network. The value is 0 since no place is able to give a cohesive 

structure. The block B-7 is one of the subset of B-1 defined as a 3-cohesive block in which at least 3 

places offer cohesion in a subset of 87 places. The iteration process goes on until B-20, which is the 

cohesive block having the highest value of cohesion. And finally, other cohesive blocks with a 

decreasing p-value are extracted from the part of the network that does not include subsets of the 

previous ones. The shape of the distribution displays two close peaks, i.e. two highly-cohesive blocks 

(B-21 and B-20). In this cohort, these two strongest cohesive blocks overlap since two central places 

belong to both, explaining why they are ranked one after the other in the distribution. Therefore, for 

cohort 1, the distribution shows the high level of centralization of the network and the weakly-

distributed control of knowledge flows. 

 

Figure 6 here 

 

We repeat this process of nested construction of p-cohesive blocks for the four cohorts. Results are 

summarized by the four distributions in the figure 6. From cohort 1 to cohort 4, the maximal p-value 

decreases while the number of blocks increases. This observation confirms the previously-observed 

decreasing hierarchy over the period, but also shows that the tendency of closure between leading places 

decreases as well, explaining why the number of “pockets” of influence increases in the overall 

network. This finding supports the idea of a more distributed influence in the coordination of R&D 

activities over the period and a gradual shift in the balance between closure and bridging that can better 

explain why in the last period hierarchy decreases at the same time than assortativity. Indeed, one can 

observe on figure 6 that when the higher p-values decrease over the period, the “distance” between 

peaks in the distribution increases, which shows that the blocks with the highest cohesion are less and 

less closely interconnected by other highly-connected places. This finding shows that more poorly-
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connected places bridge highly-cohesive groups, explaining the decreasing level of assortativity and a 

better connection between highly and loosely-connected places. 

 

 

6. Discussion of the findings 

 

Turning these findings into more qualitative readings related to the role of public collaborative 

incentives on the cluster structural change is a challenging question. As evidenced above, the network 

structure has changed over time, from a highly-concentrated to a more distributed structure of dominant 

cohesive blocks of places. The balance between closure and bridging has changed over the period, and 

organizations seem to have reoriented their collaboration pattern toward more path-breaking and less 

assortative relational behaviors. A suited solution consists in looking at the organizational demography 

of places. In doing that, the composition of places and how it evolves over time can allow identifying 

who the agents of structural change actually are.  

 

6.1. The changing structural role of SMEs 

 

A first way to assess the changing structural properties of Aerospace Valley is to focus on the so-called 

elite component (Powell et al., 2005) of the 4-cohort networks. The elite component is composed by the 

places belonging to the two highest p-cohesive blocks. This elite component corresponds to the peaks of 

the multi-component distribution. Figure 7 provides simple statistics of this component and how its 

demography evolves over time. 

 

Figure 7 here 

 

The first observation, as regards the organizational demography of the whole network (see figure 1), 

reveals that the compared shares of each organizational category in the whole network and in the elite 

one evolve according to a particular pattern. For big companies, as expected, due to their intrinsic high 

relational capabilities, their presence in the elite network is largely superior to their presence in the 

entire network, but slightly decreases in the fourth period. SMEs at the reverse are less proportionally 

present in the elite network than in the entire one in the first two periods, then they start to fill the gap 

during the third one, and finally succeed in reversing the pattern during the fourth one, with a presence 

in the elite network slightly superior as regards the entire network. Considering that the extent of 

relational portfolio is generally strongly correlated to the organization size, this pattern raises the 
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question not only of the SMEs entries, but also the question of their evolving structural role in the 

cluster. Finally, becoming a victim of the fast growing entry of SMEs in the elite network, the share of 

public research organizations decreased over the two last periods. 

 

How to explain such a structural pattern? A first trivial answer relies on the fact that policy makers have 

offered stronger incentives to involve SMEs in consortia. These incentives have produced visible and 

not surprising effects on the fourth period, with a jump in the number of SMEs involved in the entire 

network. But this answer does not suffice to explain why SMEs have succeeded in entering more than 

proportionally the higher p-cohesive blocks, which was a neither intentional nor possible objective from 

policy makers.  

 

The decreasing values of p and the changing distribution of p-cohesive blocks over the period find 

explanations in the relational capabilities and behaviors of SMEs as regards big companies. By entering 

step by step the elite network, SMEs have changed the pattern of the more central cohesive groups. 

First, SMEs being more constrained in the extent of their relational portfolio than big companies (Street 

and Cameron, 2007), the network hierarchy has decreased, giving rise to a core of the network less and 

less focused on a couple of highly-connected monopolistic companies. From the start to the end of the 

period, SMEs have progressively reinforced their role in the connectedness and cohesiveness of the 

network, being less and less peripheral, and more involved in the overall coordination of technological 

dynamics. Their stronger presence in the highest cohesive groups, where triadic closure is higher than 

elsewhere in the network, shows that they are not only purveyors of fresh knowledge at the margin. At 

the reverse, they increasingly tend to attend the design of technological standards that drive the future 

market exploitation. Second, SMEs displays an alternate pattern of collaborations as regards big 

companies. Literature in Geography of Innovation has shown in an early stage that SMEs and big 

companies to some extent differ in terms of innovation strategies. Audretsch and Lehman (2005) have 

evidenced that nascent and big companies have different perceptions about the opportunities to turn 

knowledge exploration into markets. New entrepreneurs and R&D managers of long-established 

companies differ in their timorousness facing uncertainties and risks in market-oriented researches, the 

former being steadily less conformist than the latter. These consistent differences in innovation 

management also find their counterparts in the relational behaviors and strategies. Since they may be 

willing to absorb more risks than big companies managers, new entrepreneurs tend to favor weak ties 

over strong ones in order to explore new windows of opportunities. Considering the well-known 

inverted U-shaped relationship between tie strength and new knowledge creation (McFadyen and 

Cannella, 2004; Lowik et al., 2012), these differences in relational behaviors might suggest that new 
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firms are certainly more numerous on the left-hand side of the curve, while big companies monopolize a 

large part of its right-hand side. Therefore, between under and over-embeddedness, the evolving 

composition of elite places can explain why, as SMEs enter the elite part of the network, p decreases at 

the same time as the distance between the higher p-cohesive blocks increases. The tendency of SMEs to 

adopt bridging strategies over closure deconcentrates the nested systems of cohesive blocks observed 

when the elite groups were dominated by big companies, giving over time a more and more 

decentralized structure in the distribution of influential places.  

 

To illustrate this dominant pattern of network evolution in Aerospace Valley, some examples can be 

provided. When we go in-depth in the database from cohort 1 to cohort 4, we observe the co-attendance 

of the main big incumbents of space and aircraft industry in several projects. For instance, over the 

cohort 1, Airbus and Thales are connected together in more than ten central projects focused on the 

traditional space and aircraft industry. If we add firms such as Snecma or Continental, we also find at 

least five projects in which the four companies are connected together. If we turn back to the network of 

places, the cohesive subgraphs identified as the “elite” (the pics) in the first cohort are mainly composed 

of these organizations. These projects affiliated to the “elite” can be considered as social and cognitive 

centers of the network, to the extent that they are in the confluence of the research activities, like 

unmissable “meeting points” in the cluster. If we invest the pics of the fourth cohort, several changes 

can be observed in the elite part of the network. As a matter of fact, the elite in the network of places 

consists of more subgraphs (the pics), which are more distant and involve more SMEs. These SMEs, 

partly marginally involved in the first cohorts and partly involved for the first time, are now connected 

in many projects but rarely together. At the reverse, they tend to connect unconnected parts of the 

network. For instance, Magellium and Airod Technologies are both prime contractors of at least three 

projects but only once together. In these projects different organizations are also involved and 

disseminated at different points of the network. These projects concern emerging markets such as 

drones for agriculture, observation devices and consoles for irrigation management and other transversal 

technologies using satellite positioning. This changing composition of the elite sheds light on how 

diversification and structural properties of knowledge networks work together, as it confirms the new 

organizational patterns observed by Wink (2010) in the aerospace industry. It also illustrates but not 

explains how spinoffs (Magellium, born in 2003, is a spinoff of Thales) matter for the endogenous 

development of clusters (Hervas-Oliver et al., 2017). 

 

6.2. Cluster/pipeline structure as a driver of diversification and less assortative knowledge 

networks 
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A second way to assess the changing structural properties of Aerospace Valley also consists in starting 

again by the demography of the network, but this time in relation with the inter-clustering dimension of 

selected R&D consortia. The public incentives to apply to multi-cluster projects, which have been 

implemented early after the initial policy guideline, have increased the extent of possible knowledge 

interactions for the organizations located in the Aerospace Valley area. The evolving structural 

properties of knowledge network probably find explanations in the way with which the different 

organizations of the cluster have benefited from these incentives.  

 

Figure 8 here 

 

Figure 8 displays the shares between single and multi-granted collaborative projects over the period, 

taking into account that the shares between the organizations affiliated to the Aerospace Valley cluster 

and others affiliated in other clusters remain roughly stable over the period (see Figure 1 above). The 

more salient observation is related to the strongly-decreasing share of single-granted R&D consortia 

over time, with stabilization in the last period. Less than half of the projects are supported only by the 

cluster association, while the others are sustained by at least another French cluster. A small part 

concerns projects supported by other aerospace clusters, this part being stable over the three last cohorts. 

But the most noteworthy evolution is related to the growing technological diversification of the 

network. Firstly, we observe a growing share of collaborative projects conjointly supported by French 

IT clusters during the three first cohorts. These pipelines are typical of many clusters and industries that 

invest in digitalization. For Aerospace Valley, these pipelines mainly concern both embedded systems 

and space industries, around the development of GNSS (Global Navigation Satellite Systems), which 

require technological convergence between telecommunications and spatial data transmission (Vicente 

et al., 2011). Secondly, the same occurs for projects conjointly supported by other clusters specialized in 

many other industries, over time and with a particular growth during the last cohort. Therefore, 

knowledge pipelines also exist between different places and industries1, and their recent development 

seems to be the sign of a structural change in the long-run technological dynamics of the cluster.  

 

Figure 9 here 

 

How to explain the parallel between this growing technological diversification and the evolving 

structural properties of the network skeleton? Figure 9 allows understanding this changing pattern 

                                                           
1 15 industrial sectors are listed by the French cluster policy, each cluster being affiliated to one of them. 
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during the last period. Indeed, if we consider all the places of the 4-cohort network in which 

organizations connect at least two collaborative projects among which one of them is granted by a 

cluster out of the aeronautics and the IT industry, we observe that the share of SMEs has strongly 

increased from the three first periods to the last one. Here again, SMEs appear as the main agents of the 

cluster structural change, and not only at the topological level of the network, but also at the cognitive 

level. Their tendency to be less conformist than big companies in their search from partners is also 

reflected in their higher willingness to break the industrial frontiers. The decreasing assortativity of the 

network during the last period is then supported also by technological bridging and relatedness, 

increasing the potential of diversification over time. For instance, SMEs like M3 Systems and Nexio, 

involved in R&D consortia since the start of the Aerospace Valley Program, have progressively changed 

their relational strategies. Mainly involved as simple participants in single-granted projects related to 

space industry from cohort 1 to cohort 3, these two small companies succeed in entering the core of the 

network as leading companies coordinating multi-granted projects on the emerging markets on 

navigation satellite systems. The project GEOTRANS-MD, in which M3 system is involved in cohort 4, 

has been certified by Aerospace Valley but also Systematic, the central cluster of Ile de France (Paris) 

specialized in automation and electronic systems. This project consisted in designing a standard 

applicable in the framework of the European legislation on the tracking of hazardous materials 

transport. The project LOCRAY, in which Nexio is involved in cohort 4 as prime contractor, has been 

certified by Aerospace Valley but also by Systematic and Mov’eo, the main French cluster specialized in 

new mobility and transport of the future. This project is dedicated to near-field measurements, 

electromagnetic compatibility and their compliance with EMC standards. Being still involved in local 

R&D consortia, these two small companies succeeded in acting as geographical gatekeepers (Morrison, 

2008: Morrison et al., 2013), becoming central in the knowledge pipelines related to the emerging 

markets using satellite navigation or electronics as transversal technologies. 

 

7. Conclusion 

 

It is common in the literature to study the impact of cluster policies by capturing the output and input 

additionality effects. These effects generally require investigating the causality between the design of 

public incentives and the performance of treated organizations in terms of outputs (patents, exports ...) 

and inputs (R&D expenses, absorptive capabilities …), compared to non-treated organizations and after 

the treatment ends. The paper was aiming at dealing with another complementary but too weakly-

explored challenge, related to the search for behavioral additionality effects in a particular public-

supported cluster. We have investigated how the visible hand of cluster policy makers develops micro-
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incentives to shape knowledge networks, and linked the expected and unexpected changes in the macro-

structure to the changing position and relational behavior of agents. 

 

At the methodological level, searching from the structural properties of networks composed of R&D 

consortia has required avoiding the bias and overpassing the limitations of classical 1 and 2-mode 

networks. The place-based network methodology has enabled us suggesting a new way to capture the 

evolving structure of the network skeleton, centered on a clear-cut identification of structurally-

equivalent relational behaviors. This way to proceed has highlighted the evolving structural properties 

of the cluster over time. The evolving indexes of degree distribution and correlation show that the 

structure of knowledge interactions has changed over the period, from a highly-hierarchical structure, 

centralized around a couple of long-established oligopolistic companies, to a more democratic, less 

assortative, and multipolar structure of knowledge flows. The analysis of the evolving composition of 

places has allowed a better understanding of who the agents of the structural change actually are. 

Indeed, one of the salient findings relates to the continuing entries of SMEs in the elite part of the 

network, which has changed the relational behavior of the agents of the core-component of the network, 

with a stronger tendency to favor bridging strategies over closure, at the relational as well as the 

cognitive levels. If we follow previous theoretical (Rivera et al., 2010; Crespo et al., 2014) and 

empirical findings on the efficient properties of local knowledge networks (Uzzi and Spiro, 2005, 

Breschi and Lenzi, 2016; Crespo et al., 2016), this changing pattern in the Aerospace Valley network 

may involve the possibility of a more adaptive and innovative cluster. More unexpectedly, these 

findings do not converge with evidence found for geographically and institutionally larger networks. As 

a matter of fact, papers dealing with European collaborative programs (Framework Programs) tend to 

observe an ossification of networks and an increasing oligarchic structure of interaction (Breschi and 

Cusmano, 2004; Kang and Hwang, 2016). The hypothesis that can be made is then based on the nature 

of incentive schemes. As previously observed by Balland et al. (2013), the incentives underlying cluster 

policies at the regional level are based on exploration logic. The challenge at European level is quite 

different. Incentives are dominantly oriented towards technological exploitation, and rely on the need to 

better integrate knowledge to produce dominant design for competitive global markets. Ossification and 

cohesion within the networks are therefore a coherent objective, even if the risks of lock-ins must be 

taken into account by the European institutions (Breschi and Malerba, 2009). 

 

At the policy level, even if the contribution is restricted to a single-case study among the whole of 

clusters supported by the French policy, some lessons about the effects of public incentives can be 

drawn. At first glance, the broad objective of helping clusters to turn mature industry into diversified 
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markets seems to have been achieved. Under the growing constraint to apply to inter-cluster projects, 

Aerospace Valley has reached a threshold in technological relatedness and transversality during the last 

period of the study. The cluster association staff has succeeded in nurturing fewer and fewer conformist 

collaborative projects, which have then been selected and granted at the national level. But did the local 

staff as well as the national experts actually control this new pattern of knowledge interactions? It is not 

sure. Or at least a part of this pattern has probably escaped them. Indeed, the growing incentives 

oriented to SMEs were originally merely dedicated to repair a network failure related to their difficulty 

to connect knowledge networks. For policy makers, nothing could have predicted that SMEs would 

enter the elite network more than the network per se, nor than they would have a stronger tendency to 

have non-assortative behaviors and capabilities to blur technological frontiers. Therefore, the visible 

hand of cluster policy makers does not control all the process that shapes the structural properties of 

knowledge networks. The changing pattern of Aerospace Valley network took a long time. SMEs were 

first relegated at the network periphery, without any significant role on the network structuring. After a 

while, they succeeded in positioning themselves in the elite part of the network, without any more 

public incentives, but with their own growing experience in the attendance at collaborative projects. In 

terms of cluster policy economic return, this growing experience is the mark of a positive effect of 

behavioral additionality. We succeed in partially capturing this effect. Indeed, by pushing large firms 

into collaborating with SMEs, the latter have gained a great deal of experience enabling them to better 

integrate the ecosystem and in return to succeed in establishing themselves as central actors able to take 

the leadership of projects. Without this initial impetus from policy makers, these opportunities to reach 

the elite part of the cluster could not have run for them. This leadership was not the aim of public 

incentives, so that it clearly results in behavioral additionality effect. However, we only partially shed 

light on this effect, as it would also require measuring the maintenance of links when funding expires, 

which remains on the agenda for future research. 

 

But is the growing role of SMEs in the elite network de facto a loss of control by large firms? It may be 

a misleading question. Given that part of the SMEs result of spinoff process and local labor mobility, 

social networks of the incumbents’ executives are not necessarily as far away as one can imagine. It is 

difficult to observe such a pattern when using data composed of organizations and not individuals. But 

one of the perspectives for a near future would be to couple the organizational network to the network of 

individuals, to see in the line of Audretsch and Lehman (2005) or Hervas-Oliver et al. (2017) how these 

leaders themselves promote the creation of new companies in order to absorb with them the risks of 

market diversification. Finally, an open question still remains, which also probably escapes the 

intentions of cluster policy makers. The pressures to increase the attendance of SMEs at projects have 
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strongly evinced public research organizations from the elite network. It could weaken the cluster in the 

near future, limiting the diffusion of fundamental and explorative knowledge through the entire 

network, and the long run dynamics of the cluster. 
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Tables 

 

 #nodes #projects Mean size projects Min size projects Max size projects 

Cohort#1 313 56 7,84 2 32 

Cohort#2 314 52 7,88 2 22 

Cohort#3 395 78 6,79 2 25 

Cohort#4 323 62 6,65 2 13 

Table 1: network descriptive statistics 

 

 
 #places Mean k per 

place 

Min k per 

place 

Max k per 

place 

Mean l per 

place 

Min l per 

place 

Max l per 

place 

Cohort#1 118 2 1 18 2,65 1 18 

Cohort#2 104 1,88 1 14 3,02 1 12 

Cohort#3 150 1,85 1 14 2,63 1 17 

Cohort#4 112 1,71 1 7 2,88 1 10 

Table 2: descriptive statistics (network of places) 
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Figures 

 

 
Figure 1: evolving demography of Aerospace Valley network 

 

 

 

 
Figure 2: a stylized construction of a network of places 
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Figure 3: 1-mode network and network of places (Aerospace Valley cluster, cohort#4) 

 

 

 

 
Figure 4: Degree distribution and correlation over time 
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Figure 5: the construction process of the p-cohesive blocks of the cohort 1 
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Figure 6: p-cohesive blocks (4 cohorts) 

 

 

 

 

 
Figure 7: The elite component of the Aerospace Valley network 
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Figure 8: Single & multi-granted projects and diversification 

 

 

 

 

 
Figure 9: Organizations linking aerospace industry and other technological fields 
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