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Abstract: Accidental oil spills were assessed in the north-eastern Ecuadorian Amazon, a rich
biodiversity and cultural heritage area. Institutional reports were used to estimate oil spill volumes
over the period 2001–2011. However, we had to make with heterogeneous and incomplete data.
After statistically discriminating well- and poorly-documented oil blocks, some spill factors were
derived from the former to spatially allocate oil spills where fragmentary data were available. Spatial
prediction accuracy was assessed using similarity metrics in a cross-validation approach. Results
showed 464 spill events (42.2/year), accounting for 10,000.2 t of crude oil, equivalent to annual
discharges of 909.1 (±SD = 1219.5) t. Total spill volumes increased by 54.8% when spill factors
were used to perform allocation to poorly-documented blocks. Resulting maps displayed pollution
‘hotspots’ in Dayuma and Joya de Los Sachas, with the highest inputs averaging 13.8 t km−2 year−1.
The accuracy of spatial prediction ranged from 32 to 97%, depending on the metric and the weight
given to double-zeros. Simulated situations showed that estimation accuracy depends on variabilities
in incident occurrences and in spill volumes per incident. Our method is suitable for mapping hazards
and risks in sensitive ecosystems, particularly in areas where incomplete data hinder this process.
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1. Introduction

Several routine operations in upstream oil and gas production pose risks due to hazardous
emissions including gas release and accidental oil spills [1]. The latter—which can be attributed
to pipelines, oil wells/platforms, and processing oil separation batteries—result from both regular
operations and severe incidents [2]. Accidental oil spills can have an impact on soil and water,
and consequently on the health of local populations and agricultural production [3]. Toxic chemical
contaminants, such as polycyclic aromatic hydrocarbons (PAH) and heavy metals contained in oil,
can leach into the soil, reach drinking and groundwater, and damage vulnerable ecosystems [4,5].

The north-eastern Ecuadorian Amazon (NEA) is considered as a biodiversity hotspot, with
sensitive ecosystems comprising a large number of endemic species of flora and fauna [6,7]. Rich oil
reserves in the region boosted economic growth, and helped improve education and health services [8].
However, local communities in the NEA claim the benefits for them were negligible, while they
endured decades of oil-related pollution, which caused serious health conditions and environmental
degradation [9–11]. Significant adverse effects include: declining livestock health [12]; severe health
problems in local communities and society [3,13,14]; degraded environmental amenities; a drop in
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the value of rural land [15]; and biodiversity loss [1,9]. These claims resulted in an international trial
between local communities and the international oil firm Texaco-Chevron which is still ongoing [14,16].
The NEA is consequently a relevant case study for addressing region-wide oil contamination, and it
also raises the issue of how to assess spill contamination from a scientific point of view, as these are
mainly represented by small (≤700 t) crude oil discharges distributed in space and time [2].

Ecuador’s program for social and environmental reconstruction (PRAS) put major effort into
compiling a historical oil spill geo-database for remediation purposes. Other entities, including the
Ministry of Energy and Mines (MEM) and the Amazon Defense Front (ADF, a non-governmental
organization) have also attempted to estimate the spills that occurred in the NEA from 1972 to 1991.
Three distinct periods of management in Ecuador have been identified [17]:

� T1 (1972–1991): the foreign company Texaco and the National Petroleum Corporation (CEPE)
were engaged in oil and gas activities. Over this period, the MEM estimated that 397.5 × 106 t of
crude oil were discharged to the environment [18].

� T2 (1992–2001): State-owned Petro-Ecuador took over oil production. Data compilation on
accidental oil spills was reinforced.

� T3 (from 2001): period after the environmental decree taken for regulating oil activity (RAHOE).

Spatial gridding of disaggregated oil spills is useful for several purposes, including: pollution
hotspot analysis, trajectory modelling, mapping of hazards and exposure, multiple-pollutant and
risk assessments [19–22]. Only a few studies have attempted to make spatially explicit predictions of
oil spills using kernel density estimation methods, with corrections based on data from surveillance
efforts [23] and including human and other external factors associated with oil spill patterns [24].
Oil spill studies are typically performed in an offshore context, and only very few have looked at
onshore events [2]. None of them included reliability analyses or validated models for the predicted
patterns. Because institutional databases tend to be incomplete and heterogeneous, no study has
ever attempted to use them to spatially estimate oil spill volumes in order to improve hazard or
risk assessments.

The aim of the present study was to analyze oil spill patterns in the NEA. It focused on the T3
management period, in which monitoring was much improved compared to the previous periods [25].
Our aim was also to focus on recent contaminations to obtain up-to-date estimates of potential hazards.
Surveys of local populations were used to determine spatial locations of oil spill sources and also
how the contamination potential of oil spills is currently perceived [26], but these results require
a more in-depth quantitative analysis. The present study builds a regional oil spill inventory and
draws up spatially explicit oil spill maps. In parallel, the issue of incomplete and heterogeneous
databases is addressed, so as to obtain estimated spill values in areas where data are incomplete.
Finally, the reliability of our estimation procedure was analyzed using a cross-validation method, and
the factors most likely to influence the quality of our estimates were assessed using simulated data.

2. Materials and Methods

2.1. Study Area

The study was restricted to the provinces of Sucumbíos and Orellana in the NEA (~144–900 m a.s.l.,
Amazon lowlands), representing a surface area of 35,051 km2 (Figure 1A). The NEA is a biodiversity
hotspot, including a large proportion of sensitive rainforest ecosystems. For instance, at least 210
mammals, 131 amphibians, 558 birds, and 3213 vascular plant species have been reported only in the
Yasuni National Park [7,9]. Upstream oil and gas production infrastructures are found in this zone,
and associated potentially polluting activities take place there (Figure 1B).



Sustainability 2018, 10, 4719 3 of 13

Sustainability 2018, 10, x FOR PEER REVIEW  3 of 13 

 

Figure 1. (A) The NEA in Ecuador; (B) study area within the two NEA provinces of Sucumbíos and 
Orellana including oil fields and oil separation batteries. The names of the human settlements 
represented are abbreviated: DAY = Dayuma; NL = Nueva Loja (aka. Lago Agrio); SH = Shushufindi; 
TP = Tarapoa; PUT = Putumayo; COCA = Puerto Francisco de Orellana; JS = Joya de Los Sachas; YUT 
= Yuturi; DI = Dícaro; TP = Tiputini. 

2.2. Data for Crude Oil Spills 

In this study, oil pollution was quantitatively estimated and spatially allocated using GIS and 
institutional inventory databases, including the location of oil infrastructures and oil spills. Drilling 
platforms are positioned directly over producing oilfields, whereas oil separation batteries and 
refineries are located at Nueva Loja and Shushufindi (Figure 1). Distribution pipelines connect the oil 
wells to oil separation batteries, which are cylindrical or spherical vessels used to separate oil, gas 
and water from the total fluid stream produced by wells. Oil separation batteries are in turn joined 
to the main pipeline network so that products can be transported to oil separation batteries before 
being sent west, across the Andes Mountains to the coast for export. These data were obtained from 
PRAS or public online databases (Table 1). The data were disaggregated and categorized annually 
for the T3 period (more specifically for the 2001–2011 period, for which data were available). 

Table 1. Databases used in this study 

GIS Data Description Sources 

Oil blocks, oilfields Polygons, 1:250,000 
National Board of Hydrocarbons (2014)  

Petro Ecuador (2013) 
Oil wells, platforms, 

refineries, oil 
separation batteries 

Points PRAS (1972–2014) 

Oil spills Points PRAS (1972–2014) 
Pipelines Lines SENPLADES (2009) 

Inventories 
Oil spills Historical data PRAS (2014) and local governments 

2.3. Accounting for Heterogeneity in Data Quality: Well- vs. Poorly-Documented Oil Blocks 

In Ecuador, the central government organizes bidding rounds to award oil blocks to operators, 
who then each implement different management plans. This results in non-uniform environmental 

Figure 1. (A) The NEA in Ecuador; (B) study area within the two NEA provinces of Sucumbíos
and Orellana including oil fields and oil separation batteries. The names of the human settlements
represented are abbreviated: DAY = Dayuma; NL = Nueva Loja (aka. Lago Agrio); SH = Shushufindi;
TP = Tarapoa; PUT = Putumayo; COCA = Puerto Francisco de Orellana; JS = Joya de Los Sachas; YUT
= Yuturi; DI = Dícaro; TP = Tiputini.

2.2. Data for Crude Oil Spills

In this study, oil pollution was quantitatively estimated and spatially allocated using GIS and
institutional inventory databases, including the location of oil infrastructures and oil spills. Drilling
platforms are positioned directly over producing oilfields, whereas oil separation batteries and
refineries are located at Nueva Loja and Shushufindi (Figure 1). Distribution pipelines connect
the oil wells to oil separation batteries, which are cylindrical or spherical vessels used to separate oil,
gas and water from the total fluid stream produced by wells. Oil separation batteries are in turn joined
to the main pipeline network so that products can be transported to oil separation batteries before
being sent west, across the Andes Mountains to the coast for export. These data were obtained from
PRAS or public online databases (Table 1). The data were disaggregated and categorized annually for
the T3 period (more specifically for the 2001–2011 period, for which data were available).

Table 1. Databases used in this study.

GIS Data Description Sources

Oil blocks, oilfields Polygons, 1:250,000 National Board of Hydrocarbons (2014)
Petro Ecuador (2013)

Oil wells, platforms, refineries, oil
separation batteries Points PRAS (1972–2014)

Oil spills Points PRAS (1972–2014)
Pipelines Lines SENPLADES (2009)

Inventories

Oil spills Historical data PRAS (2014) and local governments

2.3. Accounting for Heterogeneity in Data Quality: Well- vs. Poorly-Documented Oil Blocks

In Ecuador, the central government organizes bidding rounds to award oil blocks to operators,
who then each implement different management plans. This results in non-uniform environmental
disclosures, meaning that oil spill reporting can vary greatly between oil blocks. There is indeed
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a strong contrast between some blocks with a high number of incidents recorded and others, sometimes
comprising a large number of infrastructures, where few or no incidents have been reported.

It was therefore necessary to distinguish between well-documented and poorly-documented
blocks. Assuming that incidents on a single infrastructure occur at a constant rate and are independent
of one another, the number of incidents over a given time period can be described by the Poisson
distribution [24,27]. The probability of n incidents occurring during the study period is therefore

P (n) =
λn e− λ

n!
(1)

where

n = number of oil spills on the block from 2001 to 2011.
λ = expected number of oil spills from 2001 to 2011 calculated based on the number of oil

infrastructures on the block and the oil spill rate for all the oil blocks in the study area.

Parameter λ was estimated using oil well data; wells account for 70% of oil infrastructures and are
therefore considered as representative of all the infrastructures in the area. Oil blocks were categorized
as poorly-documented (i.e., the probability of observing such a low number of oil spills over the time
period was highly unlikely) if P (n ≤ nobs.) < 0.05, and as well-documented otherwise.

2.4. Calculating the Oil Spill Rates to be Used for Estimations on Poorly-Documented Blocks

The oil spill rates for poorly-documented blocks were considered inaccurate and were therefore
replaced by the rate found as described above, using data from well-documented blocks. Based on
the raw data obtained from these blocks, the annual average spill volumes were calculated separately
for three types of infrastructures: oil wells, oil separation batteries, and pipelines. These rates were
expressed per infrastructure unit for oil wells and oil batteries and per kilometer for pipelines and
were subsequently used to estimate spills within poorly-documented blocks, assuming a constant
incident risk across the study area.

The possibility of using spatial information to improve the accuracy of this oil spill rate depending
on infrastructure location (e.g., proximity to human settlements might entail greater surveillance efforts)
was examined through a geostatistical approach. For this purpose, the Getis–Ord (Gi) statistic and
Moran’s I index value were calculated. The Gi assesses the degree of clustering [28] and the Moran’s I
index value made it possible to assess the spatial dependence of values, or autocorrelation. This index
ranges from +1 to −1: positive values indicate clustering, negative values indicate dispersion and
values close to 0, complete spatial randomness [29].

2.5. Oil Spill Mapping

In order to represent crude oil spills in a GIS environment, a grid with cells of 5 × 5 km was
chosen to plot the spills and incorporate line and point infrastructure sources in the region. Spatial
data processing was performed in ArcGIS®.

Two maps were created, one plotting actual oil spills from recorded events, a second taking
into account heterogeneity in data quality and plotting estimated spills based on rates from
well-documented blocks. This second map is a plausible spatial representation of oil spills.

Estimated spills were thus allocated to all infrastructures within the study area (excluding
infrastructures that were not in production from 2001 to 2011). Estimated oil spill volumes at single
point and line sources were added together within each grid cell to obtain total oil spill volumes per
square kilometer and per year [2,19]. Values were mapped according to geometric intervals.

2.6. Validity of the Procedure to Estimate Oil Spills on Poorly-Documented Blocks

The reliability of the method used to estimate oil spills on poorly-documented blocks was assessed
using a cross-validation procedure, drawing on data from well-documented blocks. This dataset was
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divided into two parts: the first would be used to compute spill factors for the various infrastructure
types (i.e., the training subset), the second to estimate the oil spill volumes within each cell and to then
compare these estimated values with those actually observed (i.e., the testing subset).

Similarity indices were used to compare estimated vs. observed values. For this purpose, two
different metrics were used, both designed for quantitative data and ranging from 0 (extremely
dissimilar samples) to 1 (identical samples). The first one, Gower’s coefficient [30], is symmetrical
as it considers double zeros as a similarity (i.e., a negative match). The second one, the Steinhaus
coefficient [31], is asymmetrical as it is not influenced by double zeros, and therefore gives greater
emphasis to cells where oil infrastructures are located. In addition, the Pearson correlation coefficient
was also calculated.

This procedure was repeated 1000 times, using a random allocation of cells either to training or
test subsets. It was therefore possible to calculate average similarity coefficients and their standard
deviations. To determine the significance of these similarity coefficients, a Monte Carlo procedure was
performed, in which similarity coefficients were also calculated after observed and estimated spill
volumes were randomly matched in order to generate a null distribution of the similarity/correlation
coefficients (10,000 permutations computed).

Finally, to analyze to what extent the similarity coefficients were influenced by the variability
in oil spill events, a simplified simulation-based approach was implemented, focused on oil wells.
Using a uniform distribution to allocate oil spills to the wells, and a log-normal distribution to simulate
the volumes spilled (which was the best choice with regard to the distribution of the real oil spills
observed, whose volumes spanned four orders of magnitude [32]), various datasets were randomly
generated including different percentages of wells where no event had been reported over the given
time period and different standard deviations of volumes spilled in each event. The σ parameter of
the log-normal distribution for spill volumes was set between 0.0 and 3.0 in the various simulations.
The µ parameter was set at 3.5 in simulations where spills had occurred on all the wells, and this value
was changed accordingly in subsequent simulations to take into account the increase in the percentage
of oil wells where there had been no spill.

3. Results

3.1. Oil Spills: Temporal and Spatial Patterns

Historical data indicate that oil spills occurred before 2001 and represented a total spill volume of
20,386 t. From 2001 to 2011, 464 accidental oil spills accounting for a total amount of 10,000.2 t were
identified and documented by the PRAS of the Ministry of the Environment of Ecuador. 41.3% of
the total volume of oil spilled was reported to have occurred in the T3 period, the focus of our study.
The number of oil spills per year decreased from 2007 to 2011 for all infrastructures. Figure 2 presents
the overall annual number of incidents and spill volumes.
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Figure 2. Number of accidental oil spills per year (individual values shown at the top of each bar) and
the corresponding cumulative percentages relative to the total spill volume over the whole period. No
datum was recorded from 1991 to 1993 (departure of Texaco).

Table 2 summarizes the spatial variations and average values in the number of accidental oil
spills and spill volumes from 2001 to 2011. The different blocks give a total spill volume of 10,000.2 t,
associated either with oil wells/platforms (6971.7 t, n = 339), oil separation batteries (2555.7 t, n = 107),
or pipeline infrastructures (472.9 t, n = 7). Oil wells/platforms therefore contribute to ca. 70% of oil
spill volumes, while the 605 km of pipelines recorded account for less than 5%. Four oil blocks account
for >90% of the spill volumes, namely Auca, Sacha, Libertador, and Lago Agrio.

Table 2. Total and average values on original oil spill data. A total of 13 oil blocks are located within the
study area and, considering all the infrastructures, only 4 of the 13 oil blocks present greater volumes.
The subtotals are the results from a single oil block. Oil blocks by abbreviation and geographical
location are shown as follows: AU = Auca, LA = Lago Agrio which are located in Pacayacu parish, LT
= Libertador in Shushufindi, SC = Sacha in Joya de Los Sachas.

Oil Spill Occurrences Oil Spill Volumes

Total (n) Average
(n/year) Total (t) Average (t/year) Share (%)

on oil blocks
(N = 13)

block 61 (AU) 76 7 ± 5.82 4054.50 368.59 (±1119.09) 40.54
block 60 (SC) 98 9 ± 7.8 2801.56 254.68 (±324.87) 28.01
block 57 (LT) 154 14 ± 7.5 1792.13 162.92 (±159.80) 17.92
block 56 (LA) 53 5 ± 3.6 368.78 33.52 (±47.23) 3.69

sub-total 381 34.6 ± 7.8 9016.97 819.73 (±1170.14) 90.17

on single
infrastructure

Wells 339 30.82 ±
0.19 6971.66 633.79 (±1149) 69.71

Pipeline 7 0.6 472.88 42.98 (±55.4) 4.73
Oil separation

batteries 118 10.7 ± 0.62 2555.7 232.33 (±327.69) 25.56

Total 464 42.2 10,000.23 909.11 (±1219.46) 100.00

Figure 3A shows the locations of point sources, i.e., oil wells (n = 668) and oil and gas batteries
(n = 108), and line sources: 1596.37 km of recorded pipeline. Most of the infrastructures are located in
the northwest of the country, in the cities of Nueva Loja, Joya de Los Sachas, and Shushufindi.
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Figure 3. Spatial variations in oil spills during the T3 management period (2001–2011). (A) Map of
the NEA showing the main oil infrastructures with well-documented (blue) and poorly-documented
(red) oil blocks. (B) Originally recorded spills. (C) Harmonized map plotting data from (B) for
well-documented oil blocks and average constant allocation to poorly-documented oil blocks.

No spatial pattern could be identified with the metrics used (neither at block nor regional scales),
neither in terms of spill volumes (Gi = 0.0028, Z = −0.66, P = 0.51; I Moran’s index = 0.006, Z =
0.56, P = 0.57) nor incident occurrences (Gi = 0.0038, Z = −0.14, P = 0.89; I Moran’s index = −0.024,
Z = −0.84, P = 0.39), and no infrastructure attribute (except for typology, i.e., well, battery or pipeline)
could be significantly correlated with oil spill rates. The best option for estimating oil spill volumes on
poorly-documented oil blocks was therefore to use average constant allocation drawing on spill rates
from properly-documented blocks.

The following two maps: (1) spills actually recorded (Figure 3B) and (2) spatially-allocated
estimates (for poorly-documented oil blocks) associated with recorded spills (for well-documented
blocks) (Figure 3C) were used to investigate oil spill patterns. These maps show different levels of spills,
mainly concentrated in the four oil blocks already mentioned (Table 2 and Figure 3B), and highlight
spill hotspots (Figure 3B). Spatial allocation of oil spills to poorly-documented oil blocks naturally
resulted in an increase in total spill volumes.

Our final spatial distribution map shows that a hypothetical total of 15,481.5 t of oil was spilled in
the NEA i.e., a 54.8% increase compared to the recorded total (Table 2). The variations in spills on the
harmonized map for each type of infrastructure are: 4494 t for oil wells/platforms (82.0% of the total
increase), 835 t for oil separation batteries (15.2%), and 153 t for pipelines (2.8%). The cities of Tarapoa,
Yuturi, Dícaro, and Puerto Francisco de Orellana in the east all displayed larger oil spill volumes than
in the original dataset (Figure 3C).
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3.2. Reliability of the Procedure Used to Estimate Missing Data

Although assessing the validity of our approach on presumably poorly-documented oil blocks
was impossible due to the age of the oil spills, difficulties in accessing the fields, and the absence of any
further data, it was however feasible to evaluate the reliability of the method implemented using data
from properly-documented blocks. Similarity metrics between estimated and observed spill volumes
across the 942 grid-cells from well-documented blocks amounted to 0.97, 0.58, and 0.32 for Gower’s
coefficient, the Pearson correlation coefficient, and the Steinhaus index respectively.

The high average value obtained with Gower’s coefficient was related to the large number of null
values in the dataset and to the symmetrical nature of this index, giving some weight to double-zeros.
Such a high Gower index value is actually very likely to be obtained only by chance, as shown by the
Monte-Carlo procedure (10,000 permutations, p = 0.84). In contrast, the Steinhaus index does not take
double-zeros into account in similarity computations, and therefore focuses on the grid-cells where oil
infrastructures are located. Although not very high, its value is significant according to the results of
the Monte-Carlo procedure (10,000 permutations, p = 0.0016), as is the value obtained with the Pearson
correlation coefficient (10,000 permutations, p = 0.0087).

By using an exploratory approach on simulated data, we were able to investigate to what extent
our predictive ability would be affected by the sources of spatiotemporal variability in oil spill patterns.
Figure 4 shows that the similarity between observed and estimated spills obtained with the Steinhaus
index is high (i.e., above 0.8) when both incident occurrence and spill volumes are highly predictable.
In contrast, even if spill volumes remain predictable, this similarity drops when the stochasticity of
events increases.
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Figure 4. Variations of the Steinhaus index assessing the similarity between observed and estimated oil
spill volumes across a simulated area of 23,550 km2, as a function of different sources of heterogeneity.
This highlights the influence of variabilities in incident rates (i.e., spills evenly distributed across
infrastructures vs. concentrated among a small proportion of infrastructures) and in the volume of oil
spilled per incident.
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4. Discussion

4.1. Uncertainties and Data Quality

4.1.1. Data Reporting

In the NEA, oil spills decreased in later years, in line with global trends [33]. In keeping with other
studies [2,23,24], this work suggests there are primarily two reasons for this: (1) activities are better
managed and there is a general tendency for spills to decrease; and (2) surveillance efforts might be less
consistent than in previous years because of reduced data disclosure. The maps provided in the present
study are the most accurate representations of the spatial distribution of oil spills according to available
data. In this respect, the PRAS dataset is a thorough compilation of environmental assessments
performed by several local government agencies. The multiplicity of data sources is not an obstacle
to running a comprehensive analysis of oil spill patterns, provided certain quality requirements are
fulfilled [2]. In the present study, the uncertainties related to using oil spills at specific infrastructure
points are acknowledged and require caution when using these data. However, in a 5 × 5 km2 grid,
the effects of location errors are presumably less significant.

4.1.2. Spill Estimates

Estimating the quantity of hydrocarbons accidentally discharged to the environment remains
a difficult task and requires good incident tracking/reporting. Data records are often not exhaustive
because industry operators do not necessarily disclose information, and data disclosure can vary
depending on the operator and their respective management plans [16,34]. In this respect, it should
be noted that most of the oil spills recorded occurred on blocks managed by the national state
company. ‘Poorly-documented’ oil blocks are categorized as such based on the assumption that data
are incomplete, following statistical analysis. However, the statistically significant lower occurrence
of events on these blocks could also be related to more efficient management by oil operators.
These different scenarios could generate alternative results, and it could be assumed that the proper
distribution of oil spills lies somewhere between official and computed patterns (Figure 3B,C).

4.2. Accuracy of Oil Spill Estimations

Incidents can occur because of infrastructure corrosion, human errors during oil production
and transport, politically-motivated attacks, natural disasters, and so on [35,36]. The causes of oil
spills have been documented in the PRAS database and could have helped to improve the oil spill
predictions. For instance, one hypothesis is that greater efforts are put into surveillance in the vicinity
of settlements, leading to improved incident reporting, or that incident rates are higher in some areas
than in others (zones subject to flooding or seismic activity). However, this was not supported by the
data and, more generally, exploratory spatial analyses of oil spills were not conclusive as no clustering
or autocorrelation was found in spill rates or volumes. The only information that proved useful for
refining predictions was the type of infrastructure (i.e., wells, batteries, pipelines), which enabled us
to estimate different spill rates. As a result, our ability to predict oil spills within the study area is
relatively limited, as shown by the cross-validation performed on presumably properly-documented
oil blocks: when no weight was given to double-zeros (often corresponding to grid cells devoid of oil
infrastructures), ca. only 30% of spatial variations in oil spill volumes could be predicted.

This value was much improved (reaching 97%) with Gower’s coefficient, giving some weight
to the cells where there is no oil infrastructure. This highlights the importance of choosing the right
metric to assess similarity. Although the Steinhaus index is better suited in the present case to assess
the quality of our estimation method, this may be relevant to use Gower’s coefficient for assessing the
reliability of the contamination patterns predicted at the regional scale, without excluding the trivial
situations corresponding to the areas where there is no oil infrastructure and thus no oil spill.
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The analysis of simulated situations has shown that the ability to predict oil spills is strongly
dependent on unexplained variabilities in incident rates and spill volumes. In other words, a lower
variability in spill patterns logically improves predictions. Low variability can be observed in other
contexts, for instance when spills are mostly due to continuous infrastructure leaks [37]. This also
implies that any data-mining method allowing to reduce the part of residual variability in oil spill
patterns will improve predictions. Beyond the methods used in the present study, other approaches
such as machine-learning algorithms could potentially help to improve the estimation accuracy of spill
factors, provided features of oil and gas infrastructures and/or spatial data are available and offer
sufficient information about event probability or severity [38].

4.3. Spatial Distribution of Spills and Hazard Potential

Pollution hotspots could be identified from the two oil spill maps (Figure 3B,C). Joya de Los
Sachas displays the highest level of pollution, but other sites also exhibit high levels of spills such as
Yuturi, Dayuma, and the area from Shushufindi to Nueva Loja. Owing to the spill volumes allocated
to poorly-documented blocks, Dícaro and Tarapoa appear as potential areas of concern too. Ongoing
research aims to combine maps depicting the impacts to the different environmental compartments
(atmosphere, pedosphere, and hydrosphere) and classify them by pollutants (e.g., black carbon, total
hydrocarbons, heavy metals) from different sources (accidental oil spills, mud drilling pits, and gas
flares).

Achieving the target of zero harmful discharges is a real challenge. However, our data analysis
does differentiate sites where oil spills exceed hazard severity thresholds and where the potential
economic, health, and environmental losses are the highest. Severe oil spills are better defined when one
or more of the following criteria are met, including the amount spilled, remediation costs, the impacted
area, and the environmental damage sustained in an single event [39]. Data in this study offered the
opportunity to directly investigate the first criterion. For instance, an individual spill of 10,000 t is
generally considered as a severity threshold; however, other standard international thresholds give
lower amounts (34–136 t) [2] comparable to spill volumes in the present study (Table 3). These hazard
thresholds are exceeded in several locations across the NEA, but are not highlighted by our estimations
and spatial maps due to the grid resolution and time scale used. Other studies, however, suggest
chronic pollution from oil spills in the NEA [23,40], and the mapping of total pollution over a longer
period (2001–2011) might better estimate hazard-prone areas in the case of low-volume but recurrent
spill events.

Table 3. Number of emission events exceeding international severity thresholds over the period
2003–2012 in human settlements. The international standards selected are: The Environmental
Technology Centre (ETC) and the Environmental Research Consulting (ERC). YUT, POM, and TP
are in poorly-documented blocks, meaning the number of events might be higher.

Location Abbr. ETC (136
t) ERC (34 t)

COCA COCA - 2
Dayuma DAY 1 3
Dicaro DIC 1 1

Joya de los Sachas JS 8 21
Nueva Loja NL 2 10
Pompeya POM - -
Putumayo PUT - 1

Shushufindi SH - 6
Tarapoa TP - 1

Yasuni-ITT TIP - -
Yuturi YUT - -

Number 12 45
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Oil spills by infrastructure type are in concordance with worldwide historical reports [2,33].
The most severe spills originated from tankers during offshore activities. This source aside, 8.7%
of the spills recorded worldwide were due to pipelines and 29.3% to oil wells/platforms. Similarly,
data recorded in the NEA gave these sources as responsible for 4.7% and 95.3% of spills, respectively.
This goes against the common belief that oil spills are essentially due to pipelines [1].

4.4. Potential Economic, Health, and Environmental Losses

A study performed by the International Oil Pollution Compensation Fund (IOPCF), founded on
a historical oil spill dataset, derived a conversion factor of USD 51,437 per ton of oil spilled, based on
costs associated with environmental damage; clean-up; and losses in the fishery, tourism, and farming
sectors [41]. When this factor is applied to our case study, a sum of USD 514.4 million is obtained
for the whole period considered (2001–2011), i.e., USD 46.8 million/year (USD 72.4 million/year if
the predicted spill volumes in poorly-documented blocks are taken into account). This is an early
reference cost as until now the factor was generally applied to datasets from offshore oil spills; further
site-specific analyses need to be conducted in this sensitive area.

In the NEA, studies have revealed the acute toxicity of drinking water and sediment, increasing the
vulnerability of freshwater ecosystems [42] and causing human health issues, ranging from dizziness
to cancer [36,39]. Future studies should deepen understanding of other hazard sources (i.e., waste
pits) at local and regional scales. Hazard maps could improve decision-making, when combined
with vulnerability maps (e.g., groundwater, biodiversity values, etc.). Previous studies have assessed
the risk of oil concessions merely by overlaying hazards with maps of vulnerable assets at larger
scales, with a lower spatial resolution, and greater surface areas than the ones in this study [9,10,43].
This study is therefore more comprehensive and offers the potential for integrating spatio-temporal
patterns of contamination; this represents a first step towards spill maps that could be used as input to
model contaminant dispersion and trajectory, or to improve risk assessments at finer scales and spatial
resolutions when associated with vulnerability maps.

5. Conclusions

This study presents a ‘bottom-up approach’ to processing and visually representing datasets
specific to upstream oil and gas production activities (i.e., type of infrastructure) in gridded form.
In addition, the estimation of spills and the subsequent harmonized spatial distribution of pollutants
in the NEA are of great importance for this sensitive area, as they potentially provide information
about the hazards posed by these activities. This forms a set of regional and local multiple-source
spill data combining the latest available local information with spatio-temporal allocation. Overall,
the sum of incidents having occurred at oil separation batteries and oil wells/platforms during the
T3 management period contradicts the common belief that they represent only a small share of spill
sources compared to pipeline networks. The willingness of institutions and operators to disclose data
is the key. Data disclosure could help improve evaluation of pollutant releases for more effective
decision-making in land use planning to improve health, economic, and environmental conditions.
Finally, spill maps represent the total potential oil spill hazard, which could be useful for future risk
assessments in a context of scarce reliable data to predict oil spills.
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