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A Robust Optimization Methodology for Preliminary

Aircraft Design

S. Prigentabc P. Maréchalb A. Rondepierrebc T. Druota

M. Bellevillea ∗

Abstract

This paper focuses on a robust optimization of an aircraft preliminary design under opera-
tional constraints. According to engineers know-how, the aircraft preliminary design problem
can be modeled as an uncertain optimization problem whose objective (the cost or the fuel
consumption) is almost affine, and whose constraints are convex. It is shown that this un-
certain optimization problem can be approximated in a conservative manner by an uncertain
linear optimization program, which enables the use of the techniques of robust linear program-
ming from Ben-Tal, El Ghaoui, and Nemirovski (2009). This methodology is then applied to
two real cases of aircraft design and numerical results are presented.
keywords: Robust linear programming; Optimization under uncertainty; Application to
aircraft design.

1 Introduction

Accounting for uncertainties during the preliminary design phases of an aircraft design is of crucial
importance. The objective is to avoid the mistakes appearing during the test phase of the aircraft,
which can have a huge impact on the performances. For example when the final mass of the aircraft
is assessed, it is important to know the uncertainty that comes with it. Research in this field started
around the end of 20th century, with a big amount of work on uncertainty quantification (Bury,
1999; Ellison et al., 2012; Morgan and Henrion, 1990; Duvigneau et al., 2010; Nilsen and Aven,
2003), and on reliable optimization techniques (Geletu et al., 2013; Henrion, 2006; Wendt, Li, and
Wozny, 2002; Beyer and Sendhoff, 2007). It is a particular concern at Airbus as attested by the
publications (Badufle, 2007; Clément, 2009; Birman, 2013).

Uncertainties on computed solutions must be known precisely and at the very beginning phases
of the design in order to have a better knowledge of the solution reliability and thus to control it.
However, it raises several problems. Methods have recently been developed in order to obtain more
reliable and accurate designs, in reasonable computational time. Among them, the following one
can be found: robust design methods (Taguchi, 1978), chance constrained optimization methods
using min-max objectives and constraints (Padulo and Liou, 2013; Padulo et al., 2007; Padulo,
Campobasso, and Guenov, 2011), sequential methods with reliability assessment (Jaeger, 2013),
or surrogate based chance constrained optimization methods (Jin, Du, and Chen, 2003). The main
issues are the way of accounting for the uncertainties and the choice of the optimization algorithms.
Solving chance constrained programming problem relies on a probability of constraint satisfaction.
Robust optimization methods (Beyer and Sendhoff, 2007) have a wide range of applications, with
for instance the minimization of the failure probability of a solution or the minimization of the
variance of a solution. Here it is proposed to ensure the robustness of the solution whatever
the uncertainty, which means that the constraints must be satisfied. This is why the selected
method resorts to robust optimization (Ben-Tal, El Ghaoui, and Nemirovski, 2009; Ben-Tal and
Nemirovski, 2001).

∗aAIRBUS Future Project Office, M01 11/1, 316 Route de Bayonne, 31060 Toulouse Cedex 09; bInstitut de
Mathématiques de Toulouse, University of Toulouse; cINSA Toulouse
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The aircraft preliminary design optimization problem can be written in the following form:

min
X∈Rn

f(X) s.t. gi(X) ≤ 0, ∀i = 1, . . . , l

Xmin ≤ X ≤ Xmax.
(1)

In this study, the cost function f can be the fuel consumption over a given mission or the global cost
of the aircraft. The optimization variables X can be selected from the following non-exhaustive
list: the wing area and the sea-level static thrust for the 2D case, the wing aspect-ratio, the engine
By-Pass ratio, the cruise Mach or the reference cruise altitude for the multidimensional case. The
constraint functions gi represent operational constraints, such as the take-off field length, cruise
and climb speed ceiling, landing speed, which are known to be convex functions. All these functions
and their gradients are provided as black-boxes by SiMCAD, a toolbox developed by Airbus in
Scilab. This toolbox is based on low granularity models for geometry, aerodynamics, propulsion,
trajectory and masses. More details can be found in (Birman, 2013).
The contribution of this paper is to give a complete methodology for the robust optimization
of the aircraft preliminary design. Indeed, all existing studies are mainly deterministic. Until
now, uncertainties around the models are taken into account by margins chosen according to
engineers know-how, which can sometimes lead to unexpected disappointing performances. Taking
uncertainties into account could be done in two ways: chance constrained optimization as done
in Prigent et al. (2013), and robust optimization. In this paper is investigated. Due to the
particular structure of involved functions, this approach first consists in approximating the initial
aircraft preliminary design problem (1) by a linear program and then to apply dedicated robust
optimization techniques, namely the ones described in Ben-Tal, El Ghaoui, and Nemirovski (2009).

The outline of the paper is as follows. Section 2 is dedicated to the modeling of the uncertain
optimization problem in three steps: first an affine approximation of Problem (1) is built; then
uncertainties related to the modeling are defined and the way of dealing with them is presented
; lastly the techniques developed by Ben-Tal, El Ghaoui, and Nemirovski (2009, Chapter 1) are
used to obtain an equivalent tractable formulation. Finally, in Section 3, after a short description
of the Airbus toolbox SiMCAD, two cases of robust optimization of aircraft design are solved and
numerical results are presented.

Acronyms:

SiMCAD Simple Models for Conceptual Aircraft
COC Cash Operating Cost

SLSTHRUST Sea-Level Static Thrust
MTOW Maximum Take-Off Weight
MZFW Maximum Zero Fuel Weight
TOFL Take-Off Field Length

CLBVZ CLimB Vertical speed ceiling
CRZVZ CRuise Vertical speed ceiling

LDSPEED LanDing Speed

2 Modeling the uncertain linear optimization problem

Engineers knowledge and first computations concur in assuming that objective functions such as
cost or fuel consumption, are almost affine in the design variables, and that the constraint set
could be approximated by a polyhedral set, i.e. by a finite set of affine constraints. This will
enable in Section 2.1 to replace Problem (1) by a linear programming problem of the form:

min
X∈Rn

c>X + d,

s.t. A ·X ≤ b, Xmin ≤ X ≤ Xmax

(2)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn and d ∈ R. The number of constraints is m+ n.
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The next step will be in Section 2.2 to deal with uncertainties naturally arising in the aircraft
modeling. The latter will be expressed as uncertainties on the coefficients A, b, c and d. Lastly
the uncertain linear optimization problem and its robust counterpart are formulated in Section
2.3, and it is shown that it could be rewritten as a deterministic linear programming problem.

Note that all functions used along the design process are black-box type functions for which
gradients are available.

2.1 Polyhedral approximation

Assuming that the objective function f is affine, f can be replaced by its first order approximation
at X0:

f(X) = f(X0) +∇f(X0)>(X −X0),

where X0 denotes, e.g., the mean point of the bounded domain {X ∈ Rn : Xmin ≤ X ≤ Xmax}.
Let define:

c = ∇f(X0), d = f(X0)−∇f(X0)>(X −X0).

Let now focus on building a polyhedral approximation of the constraint set {X ∈ Rn : g(X) ≤
0}. For each constraint gj(X) ≤ 0, the idea is first to compute a family of points (Xj

i )i=1,...,mj on
the level set L0(gj) = {X ∈ Rn : gj(X) = 0} and then to build a piecewise linear approximation
g
j

of gj :

g
j
(X) = max

{
aj>i (X −Xj

i ) : i = 1, . . . ,mj

}
.

For a given family of points (Xj
i )i=1,...,mj

on the level set L0(gj), two ways for choosing aji ∈ Rn
are proposed:

• Approximation by tangent hyperplanes. Let define:

aji = ∇gj(Xj
i ), ∀i = 1, ...,mj ,

so that
{
aj

>

i (X −Xj
i ), i = 1, ...,mj

}
is a family of hyperplanes tangent to the constraint set

{X ∈ Rn : gj(X) ≤ 0}.

• Approximation by secant hyperplanes. Assume: mj ≥ n. For each n-uplet (X̃j
1 , . . . , X̃

j
n)

of points selected among the points Xj
1 , . . . , X

j
mj

, the equation of the hyperplane passing

through the points X̃j
1 , . . . , X̃

j
n is of the form:

aj>(X − X̃j
1) = 0.

Since the coefficients aj = (aji )i=1,...,n are defined up to a multiplicative constant, it is

arbitrary imposed: aj>X̃j
1 = 1, so that aj is solution of the following system: aj>X̃j

i = 1,
i = 1, . . . , n, i.e.: [

X̃j
1 | . . . |X̃j

n

]>
aj = 1

In both cases, the constraint gj(X) ≤ 0 is then replaced by gj(X) ≤ 0. The latter is equivalent

to: aj
>

i (X −Xj
i ) ≤ 0 for all i = 1, . . . ,mj and can be rewritten as:

AjX ≤ bj , (3)

where Aj =
[
aj1| . . . |ajmj

]>
∈ Rmj×n and bj = AjX

j
i ∈ Rmj . Lastly the constraints gj(X) ≤ 0,

j = 1, . . . , l, are now replaced by the affine constraint:

AX ≤ b,
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where: A =
[
A>1 | . . . |A>l

]> ∈ Rm×n, b =
[
b>1 | . . . |b>l

]>
and m =

l∑
j=1

mj .

In the case where constraints are affine, the tangent hyperplane approximation can be used
and is easiest to compute. When the constraint functions gj , j ∈ {1, . . . , l}, are not affine but

convex, the points Xj
i used in the secant hyperplanes computation have to be selected carefully:

more precisely, points on the boundary of the domain [Xmin, Xmax] have to be chosen in order to
obtain a conservative approximation of {X|g(X) ≤ 0}. In that case, gj(X) ≤ g

j
(X) for all X and

all j = 1, . . . , l, hence:
{X|g(X) ≤ 0} ⊂

{
X|g(X) ≤ 0

}
.

Let now describe the construction of the points (Xj
i )i=1,...,mj for each level set L0(gj), j =

1, ...,m. For the sake of clarity the subscript j is omitted in the following explanation. For a given
inequality constraint g(X) ≤ 0, the objective is to find a family of points (Xi)i=1,...,m such that
g(Xi) = 0. This problem is then decomposed into two steps: first computing one point X1 in a
reasonable computational time, and then from this first point, to compute X2, . . . , Xm such that
the family (Xi)i=1,...,m is well-distributed on the level set L0(g).

2.1.1 Computing points on the level set L0(g)

In this section the goal is to compute at least one point X1 ∈ Rn satisfying: g(X1) = 0. From an
analytical point of view, this problem can be formulated as:

min
X∈Rn

g(X)2. (4)

To solve this problem the use of a gradient-type algorithm (Bonnans et al., 2006) is proposed:
let consider an arbitrary point X̃0 ∈ Rn. By definition of the iso-level curve of g: X̃0 ∈ Lg(X̃0)

(g).

The gradient descent algorithm generates a sequence of iterates (X̃k) such that:

X̃k+1 = X̃k − 2skg(X̃k)∇g(X̃k), (5)

where sk > 0 denotes the step length. In this approach the step sk is chosen such that in case
of an affine constraint function g, Algorithm (5) converges in one single iteration: assuming g is
affine, the objective is to compute sk such that: g(Xk+1) = 0 where g can be expressed as:

g(X) = g(X̃k) +∇g(X̃k)(X − X̃k).

This yields:

sk =
1

2‖∇g(X̃k)‖2
. (6)

Finally the following iteration is obtained for the gradient descent method:

X̃k+1 = X̃k −
g(X̃k)

‖∇g(X̃k)‖2
∇g(X̃k).

The stopping criterion of the algorithm can be defined by either of the following conditions:

1. |g(X̃k)| < ε1,

2. |sk+1 − sk| < ε2 and |g(X̃k+1)− g(X̃k))| < ε3.

In the numerical experiments, ε1, ε2 and ε3 are set equal to 10−3.
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2.1.2 Find the family (Xi)i=1,...,m

Once an initial point X1 has been found, the idea is to run through the tangent hyperplane (H1):
∇g(X1)>(X−X1) = 0 using orthogonal directions. In dimension 2 and 3 a small enough step along
these directions (according to a subdivision of the minimum and maximum bounds) is defined.
Along each direction a new point is computed from which the previous search algorithm is started.
Once the current point goes beyond the bounds of the domain, the direction is no longer used. A
well-distributed family of (Xi)i=1,...,m that approximates the level curve L0(g) is obtained. This
technique is heuristic and then improvements are required to develop a better method. Numerical
examples in dimensions 2 and 3 works well. In higher dimension it becomes more difficult. A
heuristic way could be to first compute a family of points close to the level curve L0(g) with a
low cost, and then to run the previous algorithm from all these points. For example surrogate
modeling from the real functions could be used to compute the latter family.

However, a general methodology needs to be developed for a better approximation of the level
curve.

2.2 Modeling Uncertainties

In the following, uncertainties on coefficients A, b, c and d are supposed to be known. In practice,
they can be provided by engineers, or obtained by uncertainty propagation methods. The linear
programming problem taking into account the uncertain coefficients A, b, c, d can then be defined.
The following family of optimization problems is obtained:

min
X ∈ Rn

c>X + d,

s.t. A ·X ≤ b, Xmin ≤ X ≤ Xmax

(7)

where (A, b, c, d) ∈ U and U ⊂ Rm×n × Rm × Rn × R is the uncertain set. Let state:

D =

[
c> d
A b

]
, D ∈ R(1+m)×(n+1). (8)

In order to remain consistent with the analysis of A. Ben-Tal, L. El Ghaoui and A. Nemirovski in
Ben-Tal, El Ghaoui, and Nemirovski (2009), it is assumed that U admits an affine parametrization
such that:

U =

{
D =

[
c> d
A b

]
∈ R(1+m)×(n+1)

∣∣∣D = D0 +

L∑
k=1

ζkD
k, with ζ ∈ Z ⊂ RL

}
, (9)

where Z ⊂ RL denotes the perturbation set, D0 is the nominal value, and Dk is the variation.
In a first approach the worst case situation is considered, in which: L = (m + 1)(n + 1) and

the variations Dk are defined such that:

Dk
i,j =

{
1 if l = (n+ 1)(i− 1) + j,
0 otherwise.

(10)

The perturbation set Z is then of the form:

Z =

L⊗
k=1

[
ζinfk , ζsupk

]
. (11)

The definition of Z from (11) is a worst case approximation of the uncertainty set in the sense that
the uncertain set is probably overestimated. This overestimation must be dealt with cautiously
so that it does not induce infeasibility of the problem.

Note that the definition of the uncertainty set U can be simplified by introducing the affine
transformation ρk:

ρk : [−1, 1] →
[
ζinfk , ζsupk

]
(12)
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ξ 7→
ζsupk − ζinfk

2
ξ +

ζsupk + ζinfk

2
. (13)

The uncertainty set U can be rewritten as:

U =

{
D =

(
D0 +

L∑
k=1

ζsupk + ζinfk

2
Dk

)
+

L∑
k=1

ζsupk − ζinfk

2
ξkD

k

∣∣∣∣∣ ξ ∈ [−1, 1]L

}
, (14)

=

{
D = D̂0 +

L∑
k=1

ξkD̂
k

∣∣∣∣∣ ξ ∈ [−1, 1]L

}
, (15)

in which

D̂0 = D0 +

L∑
k=1

ζsupk + ζinfk

2
Dk, D̂k =

ζsupk − ζinfk

2
Dk. (16)

2.3 The uncertain linear optimization problem and its robust counter-
part

Following Ben-Tal, El Ghaoui, and Nemirovski (2009), the Problem (7) is equivalently reformulated
in such a way that uncertainties only appear in the constraints:

min
(X, t) ∈ Rn+1

t s.t. AX ≤ b,

c>X + d ≤ t, Xmin ≤ X ≤ Xmax,
(17)

for any (A, b, c, d) ∈ U . By definition, a robust solution of (17) is an optimal solution of its robust
counterpart and the robust counterpart of the Problem (17) is defined by:

min
(X,t)∈Rn+1

(
sup

(A,b,c,d)∈U
t

)
s.t. AX ≤ b, c>X − t ≤ −d,

Xmin ≤ X ≤ Xmax,
∀ (c, d,A, b) ∈ U ,

which is equivalent to:

min
(X,t)∈Rn+1

t s.t. AX ≤ b, c>X − t ≤ −d,

Xmin ≤ X ≤ Xmax,
∀ (c, d,A, b) ∈ U .

(18)

Let A :=
[
a>1 , ..., a

>
m

]>
. The robust counterpart (18) can be rewritten as:

min
(X,t)∈Rn+1

t s.t. a>i X ≤ bi, i = 1, . . . ,m

c>X − t ≤ −d,
Xmin ≤ X ≤ Xmax,
∀ (c, d,A, b) ∈ U .

(19)

By means of the machinery of Ben-Tal, El Ghaoui, and Nemirovski (2009), the latter can be
rewritten into the following deterministic linear optimization problem (see appendix A for technical
details):

min
X̃∈R2n+1

C ′>X̃ s.t. AX̃ ≤ b,

Xmin ≤ X ≤ Xmax,
(20)

where the optimization variables are: X̃ =
(
X>, t,u>

)>
and:

C′ = (0, . . . , 0, 1, 0, . . . , 0)
> ∈ R2n+1,
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A =


In 0n −In
−In 0n In

ˆA(0) 0m P (a)

Ĉ(0)
>
−1 P(c)

 ∈ R(2n+m+1)×(2n+1), (21)

b =
(

01×2n, b̂
(0) −P(b),−P (d) − d̂(0)

)>
∈ R(2n+m+1). (22)

The scalars, vectors and matrices ˆA(0), Ĉ(0), P (a), P(c), P (b) and P (d) are defined in ap-
pendix A. Finally a linear program with (2n+ 1) unknowns and (2n+m+ 1) constraints, where
m is the number of initial constraints, is obtained. For example, in the 2-dimensional case-study,
it yields that X ∈ R2, u ∈ R2 and t ∈ R.

3 Application: Aircraft Preliminary Design Robust Opti-
mization

Preliminary aircraft design is the first step in the passenger transport aircraft design process
(Badufle, 2007). The goal is to choose, among several concepts, the one which would be relevant
according to a well defined objective (cost, fuel consumption or environmental impact). For each
concept, the main aircraft parameters have to be assessed consistently according to a common set
of requirements.

In this section the aircraft preliminary design process is first briefly presented and the related
uncertain optimization problem is defined. The way to propagate uncertainties through the models
is then described, and finally the whole methodology is applied to two real cases of aircraft design.

3.1 The Aircraft Preliminary Design Process

The design process is multidisciplinary since several physics such as geometry, aerodynamics, mass,
propulsion, performance and cost analysis are involved.

The used aircraft toolbox is called SiMCAD (Simple Models for Conceptual Aircraft Design),
developed in Scilab (Scilab Enterprises, 2012) and dedicated to research activity in the domain
of Overall Aircraft Design. It is a toolbox of models that allows to run simple, but realistic,
pre-design processes involving all main physics of an aircraft. It offers the possibility to test
multi-disciplinary, multi-level, multi-objective and robust optimization strategies without having
to manage huge amount of data and huge computation time. A complete description of these
models can be found in (Birman, 2013).

More precisely, semi-empirical models are used for the aerodynamics and the masses, and
simplified physical models of operational performances. To sum up, all combined models count
around 180 parameters and 50 functions. They have been validated on existing aircrafts. Some
optimization parameters that will allow to define an aircraft configuration have now to be chosen.
Engineers practice and know-how lead to choose the Wing Area that controls the dimension of
the wing and the Sea Level Static Thrust (SLSThrust) that controls the engine size.

Now, the aircraft configuration has to be optimized according to a given objective. It is here
chosen the Cash Operating Cost (COC) which takes into account the fuel, the masses, the engine
and airframe maintenance, the crew cost and some navigation charges. Some requirements are also
selected such as the range of the aircraft, that correspond to the customer demands (see Table 1).
Operational needs for safety and operations define a set of inequality constraints described in
Table 2.

Models and functions that drive the aircraft configuration computation, are sequential. The
whole process can be represented from a global point of view by the diagram presented in Figure 1:
it shows the way the different physics interact, how an aircraft is computed from requirements
and input variables and how objectives and constraints are computed.
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Table 1: Description of the baseline aircraft requirements.

Name Value

Number of Passengers (Npax) 180
Design Range 2000 NM
Cruise Mach number 0.65
Wing Aspect Ratio 12
Number of Turbofan Engine 2
Engine By Pass Ratio 10
Top of Climb altitude 35000 ft
Engine Overall Pressure Ratio 40

Table 2: Objective and Constraints.

Objective f Cash Operating Cost (COC) $/trip

g1 Take-off field length 1 (at Sea Level) (TOFL1) ≤ 2000 m
g2 Take-off field length 2 (in High & Hot conditions) (TOFL2) ≤ 2500 m

Constraints g3 Climb vertical speed ceiling (CLBVZ) ≥ 500 ft/min
g4 Cruise vertical speed ceiling (CRZVZ) ≥ 300 ft/min
g5 Landing Speed (LDSPEED) ≤ 130 kt

Figure 1: Aircraft Simple Design Process Diagram.

Moreover, the design process is significantly improved when the uncertainty associated to each
criteria is provided. Therefore robust optimization has a high added value compared to a classic
deterministic one. As mentioned before, uncertainty quantification has already been assessed
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and the most important impact of uncertainty is coming from the computation of aerodynamic
efficiency, specific fuel consumption and structural weight. Taking these uncertainties into account,
it is presented in this section a two-dimensional and a three-dimensional application cases. The
different steps of the approach are summarized hereafter:

• Build an affine approximation for the objective and a polyhedral approximation for the
constraints set.

• Quantify and propagate uncertainties with a first order approximation method in order to
obtain L∞ boxes on all ζ’s.

• Build corresponding A, b, c and d in order to obtain the Problem (20)

• Solve the linear constrained programming problem (20) using the simplex algorithm (Kar-
markar, 1984). Here the linpro function from Scilab is used.

In each test case, the robust solution, i.e. the solution of (20), is compared to the (non robust)
solution of the initial deterministic optimization problem (1). The latter is solved using a Feasible
Sequential Quadratic Programming algorithm (Zhou and Tits, 1992), here the fsqp Scilab function.

3.2 Uncertainty propagation method

The processes involved in the preliminary aircraft design, are bringing uncertainties. They are
based on semi-empirical models in which some equations are replaced by regressions from databases.
Recently, these uncertainties have been quantified (Birman, 2013). It is now the time to take them
into account in the design process.

To evaluate uncertainties on the coefficients A, b, c, d of the Problem (2), several propagating
methods can be used (Padulo and Liou, 2013; Padulo et al., 2007; Padulo, Campobasso, and
Guenov, 2011; Prigent et al., 2013). The Monte-Carlo sampling is the more accurate one but
also the one with the highest computational cost. Moreover the following important information
has to be taken into account : the evaluation of the constraints and the objective functions is
computationally expensive and the constraints and the objective functions are almost affine.

This is why a moment based propagation method with a first order Taylor approximation
of the uncertain function, is used: it is a non intrusive method which offers in this case a good
compromise between accuracy and computational cost. The main steps of the propagation method
are the following:

• Get or compute the first moments of the model input uncertainty distributions,

• Propagate moments through computation process and get the moments of the output un-
certain values using a first order moment method (Lee and Kwak, 1987; Tichỳ, 1994),

• Use these moments to determine the uncertainty set on coefficients A, b, c and d. This
is done by following Moments Methods from Pearson (1936), that allows to reconstruct a
distribution from its moments. Based on this approach, Birman (2013) shows that distri-
butions parameters can be computed as a function of the moments and thus determine the
distribution support. The bounds of the supports are then the interval of output uncertainty.

An other example of use of the moment propagation method can be found in Prigent et al.
(2013).

3.3 Robust Aircraft Design Optimization

The baseline short range aircraft presented in Section 3.1 is chosen. The corresponding robust
optimization problem is defined by:

min
X∈Rn

f(X) s.t. gi(X) ≤ 0, i = 1, . . . , 5,

Xmin ≤ X ≤ Xmax,
(23)
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where the objective and the constraints are defined in Table 2. All constraints are written under
the standard form: gi(X) ≤ 0, and the optimization variables are defined in Table 3. They have
to satisfy box constraints. In the case n = 2 the cruise Mach is set to 0.65.

Table 3: Optimization variables (x1, x2) when n = 2 and (x1, x2, x3) when n = 3.

Name Unit Lower and Upper bounds

x1 Wing Area m2 [100, 170]
x2 Sea-Level Static Thrust daN [9000, 13000]
x3 Cruise Mach mach [0.65, 0.76]

In what follows, the objective function f denotes the Cash Operating Cost (COC) computed
with respect to the Wing Area x1, the Sea-Level Static Thrust x2 and the Cruise Mach x3. This
function is almost affine in (x1, x2, x3) while the constraint functions gi are convex.

3.3.1 Case n=2

In two dimensions, the formulation of the problem is the following one:

min
(x1,x2)∈R2

f(x1, x2, 0.65) s.t. gi(x1, x2) ≤ 0, i = 1, . . . , 5,

100 ≤ x1 ≤ 170,
9000 ≤ x2 ≤ 13000.

(24)

For a better understanding of the proposed approach, Figure 2 shows a 2D map with constraints
and some level curves of the objective function.

Figure 2: Aircraft 2D Design Problem, with constraints and objective level curves.

The first step of this approach is to compute the affine approximation of f at the mean
point of the domain of definition, and the piecewise affine approximation of the gi at points Xi

j ,
j = 1, ...,mj . For this the method to find points on each constraint level curve is applied. These
points are the crosses from Figure 2. They will also be represented in the next figures. Then, as
constraints are convex functions, the secant hyperplanes are built. Observe that the more non-
affine the constraint, the higher the number of approximating hyperplanes. Figure 3 shows the
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polyhedral approximation of the constraints set and some level curves of the linearized objective.
The corresponding hyperplanes equations are of the form:

a
(i)
1 x1 + a

(i)
2 x2 = 1, i = 1, ...,m. (25)

Figure 3: Approximation of Aircraft 2D Design Problem, with piecewise affine constraints and
affine objective.

Once the equations of the constraints and of the objective are obtained, the next step is the
propagation of uncertainty. The following sources of uncertainty are considered:

• from aerodynamic models: Lift over Drag coefficient (LoD) is calculated with an error of
±1% around its nominal value,

• from mass models: Maximum Overall Empty Weight (MWE) is calculated with an error of
±1% around its nominal value,

• from propulsion models: Specific Fuel Consumption (SFC) is calculated with an error of
±1% around its nominal value.

The first order Taylor based propagation method gives as a result the uncertain interval on(
a
(i)
1 , a

(i)
2

)
, i = 1, ...,m. The uncertainty interval is also computed for the affine objective function

coefficients.
Finally the original problem is reformulated as a linear programming problem such as (20).

In this case, with an initial number of approximating hyperplanes m = 25, it yields a linear
programming problem in dimension 5 with a total of 30 constraints. Using a classical linear
programming solver (linpro from scilab) based on the simplex method the obtained solution is
presented in Figure 4. Constraints at the solution point are also represented on this figure. And
the solution is:

Xsol =
(
10292 daN, 115.6 m2

)
, with the objective value: COC = 4285 $/pax.

The robust solution Xsol is then compared to the non robust solution Xdet
sol of the initial deter-

ministic optimization problem (1):

Xdet
sol =

(
10121 daN, 114.3 m2

)
, with the objective value: COCdet = 4279 $/pax.

11



Figure 4: Robust Approximation of Aircraft 2D Design Problem and its solution.

Table 4: Constraints reliability assessment at point Xsol (case n = 2).

Constraint Upper Bound (gmax(Xsol)) Relative Upper Bound

Take-off field length 1 - 5.8 -0.003
Take-off field length 2 - 176 -0.07
Climb vertical speed ceiling - 3 -1.2
Cruise vertical speed ceiling - 3.1 -2.0
Landing Speed - 0.02 -0.0003

As expected, the price of robustness is a small increase of cash operating cost (COC) value.
The last step is to verify the robustness of the solution Xsol. For that a reliability assessment of

the obtained solution pointXsol is done with the original constraint functions. Using the previously
mentioned propagation method the interval of error on each constraint is computed (written in
the form g(X) ≤ 0). For a constraint g(Xsol) the uncertain interval

[
gmin(Xsol), g

max(Xsol)
]

is
obtained. Then the solution is robust, meaning that constraints are always satisfied, if and only
if gmax(Xsol) ≤ 0. Results are in Table 4. Relative upper bound represents the upper bound
divided by the required value of Table 2 for each constraint. It is observed that active constraints
(Take-off field length 1 and Landing Speed) have the lowest relative reliability margin as expected.

3.3.2 Case n=3

In this case, the cruise Mach number is added to the optimization variables. The formulation of
the problem is the following one:

min
(x1,x2,x3)∈R3

f(x1, x2, x3) s.t. gi(x1, x2, x3) ≤ 0, i = 1, . . . , 5,

100 ≤ x1 ≤ 170,
9000 ≤ x2 ≤ 13000,
0.65 ≤ x3 ≤ 0.76.

(26)

The same steps as for the case n = 2 are followed. An affine approximation of f at the mean point
of the domain of definition is first computed, and then a piecewise affine approximation of the gi
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at points Xi
j , j = 1, ...,mj . For that the method to find points on each constraint level curve is

applied. Since the constraint functions are known to be convex, secant hyperplanes are built. Then
the same sources of uncertainties from aerodynamic, mass and propulsion models are considered.
Finally the problem is reformulated in order to obtain a linear programming formulation such as
in Equation (20). In this case, with an initial number of approximating hyperplanes m = 43, it
yields a linear programming problem in dimension 7 with a total of 50 constraints. Using the
linpro linear programming solver from Scilab the solution is:

Xsol =
(
9764 daN, 141.2 m2,mach 0.76

)
, with: COC = 4080 $/pax.

The robust solution Xsol is then compared to the non robust solution Xdet
sol of the initial deter-

ministic optimization problem (1):

Xdet
sol =

(
9306 daN, 137 m2,mach 0.76

)
, with: COCdet = 4070 $/pax.

The reliability assessment at the solution is also done. Table 5 presents each constraint. Reliability
is satisfied. Let finally have an insight into the computational cost of the robust design approach:

Table 5: Constraints reliability assessment at point Xsol (case n = 3).

Constraint Upper Bound Relative Upper Bound

Take-off field length 1 - 95 -0.05
Take-off field length 2 - 267 -0.11
Climb vertical speed ceiling - 1.1 -0.44
Cruise vertical speed ceiling - 1.2 -0.8
Landing Speed - 0.41 -0.006

Table 6 presents the number of calls to the process in the deterministic case and in the robust
case. Note that the computational effort spent using the robust approach, comes only from the
linearization process.

4 Conclusion and perspectives

This paper proposes a methodology to apply techniques of robust linear programming to the
aircraft preliminary design problem. Under the assumptions of an affine objective and convex
constraints, the problem is first approximated in a conservative manner by an uncertain linear
program. In the case when the uncertainty set on the output is unknown, a propagation method
can be used. The uncertain linear optimization problem is obtained and its robust counterpart is
formulated. Results are presented for a two and a three dimensional test cases. In both cases, the
obtained solutions are robust.

However this approach raises several limitations. The first issue appears during the approxima-
tion of constraint level curves. The way of building the secant hyperplanes from a family of points
from the level curve is heuristic. In dimension two and three, a heuristic method that consists
in merging closest points to build hyperplanes and then browse the level curve going through all
directions, allows to construct a good approximation. It may be more difficult in higher dimen-
sion. A further step in the study would be to find a general methodology to build a piecewise

Table 6: Number of calls to the aircraft design process.

Deterministic Optimization with SQP Robust Optimization

2D case 25 160
3D case 55 389
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affine approximation of a level curve whatever the design space dimension is. The second issue is
in the case when one only has uncertainties about model inputs. The choice of the propagation
method to build the uncertain set on output is important. The need of being conservative makes
fundamental the accuracy of the output error interval. An underestimation of this interval could
lead to non-robust solutions.
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A

This appendix is dedicated to the conversion of the uncertain optimization problem to its equivalent

robust counterpart. Let define: Pk =
ζsup
k −ζinf

k

2 . The following equation are equivalent:

∀(A, b, c, d) ∈ U :

{
∀i = 1, . . . ,m, a>i X ≤ bi,
c>X − t ≤ −d,

⇔ ∀(A, b, c, d) ∈ U :

{
∀i = 1, . . . ,m,

∑n
j=1 ai,j · xj ≤ bi,∑n

j=1 cj · xj − t ≤ −d,

⇔ ∀ξ ∈ [−1, 1]L:

{
∀i = 1, . . . ,m,

∑n
j=1 â

(0)
i,j · xj +

∑n
j=1 P

(a)
i,j · ξi,j · xj ≤ b̂

(0)
i + P

(b)
i · ξb,∑n

j=1 ĉ
(0)
j · xj +

∑n
j=1 P

(c)
j · ξj · xj − t ≤ −d̂(0) − P (d) · ξd,

⇔ ∀ξ ∈ [−1, 1]L:

{
∀i = 1, . . . ,m,

∑n
j=1 ξi,j · P

(a)
i,j xj − ξb · P

(b)
i ≤ B̂(0)

i ,

ξd · P (d) +
∑n
j=1 ξj · P

(c)
j xj ≤ D̂(0),
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⇔


∀i = 1, . . . ,m,

∑n
j=1 max

−1≤ξi,j≤1

[
ξi,j · P (a)

i,j xj

]
− min
−1≤ξb≤1

[
ξb · P (b)

i

]
≤ B̂(0)

i ,

max
−1≤ξd≤1

[
ξd · P (d)

]
+
∑n
j=1 max

−1≤ξj≤1

[
ξj · P (c)

j xj

]
≤ D̂(0),

⇔

{
∀i = 1, . . . ,m,

∑n
j=1 P

(a)
i,j |xj |+ P

(b)
i ≤ B̂(0)

j ,

P (d) +
∑n
j=1 P

(c)
j |xj | ≤ D̂(0),

⇔ ∃u ∈ Rn:


∀j = 1, . . . , n, |xj | ≤ uj ,
∀i = 1, . . . ,m,

∑n
j=1 P

(a)
i,j uj + P

(b)
i ≤ B̂(0)

i ,∑n
j=1 P

(c)
j uj + P (d) ≤ D̂(0),

⇔


∀j = 1, . . . , n, xj − uj ≤ 0,

∀j = 1, . . . , n, − xj − uj ≤ 0,

∀i = 1, . . . ,m,
∑n
j=1 P

(a)
i,j uj + P

(b)
i ≤ B̂(0)

i ,∑n
j=1 P

(c)
j uj + P (d) ≤ D̂(0),

⇔


∀j = 1, . . . , n, xj − uj ≤ 0,

∀j = 1, . . . , n, − xj − uj ≤ 0,

∀i = 1, . . . ,m,
∑n
j=1 P

(a)
i,j uj +

∑n
j=1 â

(0)
i,j · xj + P

(b)
i − b̂(0)i ≤ 0,∑n

j=1 P
(c)
j uj +

∑n
j=1 ĉ

(0)
j · xj − t+ P (d) + d̂(0) ≤ 0,

⇔ AX̃ ≤ b.

In the above equations: X̃ =
(
X>, t,u>

)>
, and:

∀i = 1, . . . ,m , B̂
(0)
i = b̂

(0)
i −

n∑
j=1

â
(0)
i,j · xj ,

D̂(0) = −d̂(0) −
n∑
j=1

ĉ
(0)
j · xj + t,

C′ = (0, . . . , 0, 1, 0, . . . , 0)
> ∈ R2n+1,

A =


In 0n −In
−In 0n In

ˆA(0) 0m P (a)

Ĉ(0)
>
−1 P(c)

 ∈ R(2n+m+1)×(2n+1),

b =
(

01×2n, b̂
(0) −P(b),−P (d) − d̂(0)

)>
∈ R(2n+m+1),

Â(0) =


â
(0)
1,1 . . . â

(0)
1,n

... . . .
...

â
(0)
m,1 . . . â

(0)
m,n

 , P(a) =


P

(a)
1,1 . . . P

(a)
1,n

... . . .
...

P
(a)
m,1 . . . P

(a)
m,n

 ,

Ĉ(0) = (ĉ
(0)
1 , . . . , ĉ(0)n ) , P(c) = (P

(c)
1 , . . . , P (c)

n )>,

ˆb(0) = (b̂
(0)
1 , . . . , b̂(0)m ) , P(b) = (P

(b)
1 , . . . , P (b)

m ).
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