Article Dans Une Revue Proceedings of the VLDB Endowment (PVLDB) Année : 2023

SHEVA: A Visual Analytics System for Statistical Hypothesis Exploration

Vicente Nejar de Almeida
  • Fonction : Auteur
Eduardo Ribeiro
  • Fonction : Auteur
Nassim Bouarour
  • Fonction : Auteur
João Luiz Dihl Comba
  • Fonction : Auteur
Sihem Amer-Yahia

Résumé

We demonstrate SHEVA, a System for Hypothesis Exploration with Visual Analytics. SHEVA adopts an Exploratory Data Analysis (EDA) approach to discovering statistically-sound insights from large datasets. The system addresses three longstanding challenges in Multiple Hypothesis Testing: (i) the likelihood of rejecting the null hypothesis by chance, (ii) the pitfall of not being representative of the input data, and (iii) the ability to navigate among many data regions while preserving the user's train of thought. To address (i) & (ii), SHEVA implements significance adjustment methods that account for data-informed properties such as coverage and novelty. To address (iii), SHEVA proposes to guide users by recommending one-sample and two-sample hypotheses in a stepwise fashion following a data hierarchy. Users may choose from a collection of pre-trained hypothesis exploration policies and let SHEVA guide them through the most significant hypotheses in the data, or intervene to override suggested hypotheses. Furthermore, SHEVA relies on data-to-visual element mappings to convey hypothesis testing results in an interpretable fashion, and allows hypothesis pipelines to be stored and retrieved later to be tested on new datasets.
Fichier sous embargo
Fichier sous embargo
0 0 9
Année Mois Jours
Avant la publication
samedi 1 février 2025
Fichier sous embargo
samedi 1 février 2025
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04728416 , version 1 (09-10-2024)

Identifiants

Citer

Vicente Nejar de Almeida, Eduardo Ribeiro, Nassim Bouarour, João Luiz Dihl Comba, Sihem Amer-Yahia. SHEVA: A Visual Analytics System for Statistical Hypothesis Exploration. Proceedings of the VLDB Endowment (PVLDB), 2023, 16 (12), pp.4102-4105. ⟨10.14778/3611540.3611631⟩. ⟨hal-04728416⟩
45 Consultations
1 Téléchargements

Altmetric

Partager

More